login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264903 Number of defective parking functions of length 2n and defect n. 2
1, 1, 23, 1442, 176843, 36046214, 11023248678, 4719570364004, 2693983725947891, 1976997422623843358, 1813499364725872444178, 2033181299894696684493980, 2735368952738645928181452734, 4349180440965667221581315433212, 8067655677482008559181766540571948 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

Peter J. Cameron, Daniel Johannsen, Thomas Prellberg, Pascal Schweitzer, Counting Defective Parking Functions, arXiv:0803.0302 [math.CO], 2008

FORMULA

a(n) = A264902(2n,n).

a(n) ~ c * d^n * n^(2*n), where d = 4 * ((1-r)/(2-r))^(2-r) * ((1+r)/r)^r = 1.37946886318881879639758089832698445354075122787883765455607405487162077... where r = 0.3507604755943619981673674677676002458987390260372260977704596... is the root of the equation (((2-r)*(1+r))/((1-r)*r))^(1-r^2) = exp(2) and c = 0.71338164469811281152311896105657925861924201644973836628479626510877... - Vaclav Kotesovec, Aug 19 2017

EXAMPLE

a(2) = 23: [1,4,4,4], [2,4,4,4], [3,3,3,3], [3,3,3,4], [3,3,4,3], [3,3,4,4], [3,4,3,3], [3,4,3,4], [3,4,4,3], [3,4,4,4], [4,1,4,4], [4,2,4,4], [4,3,3,3], [4,3,3,4], [4,3,4,3], [4,3,4,4], [4,4,1,4], [4,4,2,4], [4,4,3,3], [4,4,3,4], [4,4,4,1], [4,4,4,2], [4,4,4,3].

MAPLE

S:= (n, k)-> `if`(k=0, n^n, add(binomial(n, i)*k*

             (k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k)):

a:= n-> S(2*n, n)-S(2*n, n+1):

seq(a(n), n=0..20);

MATHEMATICA

s[n_, k_] :=  Sum[Binomial[n, i]*k*(k + i)^(i - 1)*(n - k - i)^(n - i), {i, 0, n - k}]; Flatten[{1, Table[s[2*n, n] - s[2*n, n + 1], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 19 2017 *)

(* constant d *) 4*((1 - r)/(2 - r))^(2 - r)*((1 + r)/r)^r /.FindRoot[(((2 - r)*(1 + r))/((1 - r)*r))^(1 - r^2) == E^2, {r, 1/2}, WorkingPrecision -> 100] (* Vaclav Kotesovec, Aug 19 2017 *)

CROSSREFS

Cf. A264902.

Sequence in context: A268961 A196422 A248703 * A003281 A330658 A034243

Adjacent sequences:  A264900 A264901 A264902 * A264904 A264905 A264906

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Nov 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)