OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..200
Peter J. Cameron, Daniel Johannsen, Thomas Prellberg, Pascal Schweitzer, Counting Defective Parking Functions, arXiv:0803.0302 [math.CO], 2008
FORMULA
a(n) = A264902(2n,n).
a(n) ~ c * d^n * n^(2*n), where d = 4 * ((1-r)/(2-r))^(2-r) * ((1+r)/r)^r = 1.37946886318881879639758089832698445354075122787883765455607405487162077... where r = 0.3507604755943619981673674677676002458987390260372260977704596... is the root of the equation (((2-r)*(1+r))/((1-r)*r))^(1-r^2) = exp(2) and c = 0.71338164469811281152311896105657925861924201644973836628479626510877... - Vaclav Kotesovec, Aug 19 2017
EXAMPLE
a(2) = 23: [1,4,4,4], [2,4,4,4], [3,3,3,3], [3,3,3,4], [3,3,4,3], [3,3,4,4], [3,4,3,3], [3,4,3,4], [3,4,4,3], [3,4,4,4], [4,1,4,4], [4,2,4,4], [4,3,3,3], [4,3,3,4], [4,3,4,3], [4,3,4,4], [4,4,1,4], [4,4,2,4], [4,4,3,3], [4,4,3,4], [4,4,4,1], [4,4,4,2], [4,4,4,3].
MAPLE
S:= (n, k)-> `if`(k=0, n^n, add(binomial(n, i)*k*
(k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k)):
a:= n-> S(2*n, n)-S(2*n, n+1):
seq(a(n), n=0..20);
MATHEMATICA
s[n_, k_] := Sum[Binomial[n, i]*k*(k + i)^(i - 1)*(n - k - i)^(n - i), {i, 0, n - k}]; Flatten[{1, Table[s[2*n, n] - s[2*n, n + 1], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 19 2017 *)
(* constant d *) 4*((1 - r)/(2 - r))^(2 - r)*((1 + r)/r)^r /.FindRoot[(((2 - r)*(1 + r))/((1 - r)*r))^(1 - r^2) == E^2, {r, 1/2}, WorkingPrecision -> 100] (* Vaclav Kotesovec, Aug 19 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 28 2015
STATUS
approved