login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264901 Sorted powers C^z = A^x + B^y with all positive integers and x,y,z > 2, with multiplicity. 3
16, 32, 64, 64, 128, 128, 128, 243, 256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2744, 4096, 4096, 4096, 4096, 6561, 6561, 6561, 6561, 8192, 8192, 8192, 8192, 8192, 8192 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

We do not distinguish between the representations C^z = A^x + B^y and C^z = B^y + A^x.

This sequence is based on the type of equation involved in Beal's conjecture.

LINKS

Anatoly E. Voevudko, Table of n, a(n) for n = 1..615

American Mathematical Society, Beal Prize

Anatoly E. Voevudko, Description of all powers in b245713

Anatoly E. Voevudko, Description of all powers in b261782

Anatoly E. Voevudko, Description of all powers in b264901

Wikipedia, Beal's conjecture

EXAMPLE

128 = 64 + 64 ==> 2^7 = 2^6 + 2^6 = 2^6 + 4^3 = 4^3 + 4^3 (but not 4^3 + 2^6).

PROG

(PARI) b264901(lim)=

{my(Lc=List(1), Lb=List(), La=Lb, czn, lan, lbn, lcn, lim2=logint(lim, 2), lim3);

for(z=3, lim2, lim3=sqrtnint(lim, z); for(C=2, lim3, listput(Lc, C^z)));

lcn=#Lc; if(lcn==0, return(-1));

for(i=1, lcn, for(j=i, lcn, czn=Lc[i]+Lc[j]; if(czn>lim, next);

La=findinlista(Lc, czn); lan=#La; if(!lan, next);

for(k=1, lan, listput(Lb, czn)); )); lbn=#Lb; listsort(Lb);

for(i=1, lbn, print(i, " ", Lb[i]))}

findinlista(list, item, sind=1)=

{my(ln=#list, Li=List()); if(ln==0 || sind<1 || sind>ln, return(Li));

for(i=sind, ln, if(list[i]==item, listput(Li, i))); return(Li); }

CROSSREFS

Cf. A245713, A261782.

Sequence in context: A204645 A236323 A018923 * A172418 A036967 A076468

Adjacent sequences:  A264898 A264899 A264900 * A264902 A264903 A264904

KEYWORD

nonn,easy

AUTHOR

Anatoly E. Voevudko, Nov 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 19:16 EST 2020. Contains 331153 sequences. (Running on oeis4.)