login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003281
Numerators of coefficients of Green function for cubic lattice.
(Formerly M5137)
1
0, 1, 23, 1477, 555273, 38466649, 1711814393, 48275151899, 28127429172349, 11820256380127, 61330815490787739, 1438084556561535649, 3452174145433606905, 1300912433743549667989, 275638998008835888305243
OFFSET
0,3
REFERENCES
G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008, Table of n, a(n) for n = 0..22
FORMULA
Let {B1(n)} be the sequence of rational numbers defined by the recurrence: 16*n*(n+1)*(2n+1)*B1(n+1) - n*(60n^2+9)*B1(n) + 3*(2n-1)^3*B1(n-1) + (n-1)*(2n-1)*(2n-3)*B1(n-2) = 0 for n >= 1 with B1(0) = 0 and B1(1) = 1. Then a(n) is the numerator of B1(n). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008
PROG
(PARI) B1=vector(100); B1[4]=1; print1("0, 1, "); for(n=2, 30, B1[n+3]=((n-1)*(60*(n-1)^2+9)*B1[n+2]-3*(2*n-3)^3*B1[n+1]-(n-2)*(2*n-3)*(2*n-5)*B1[n])/(16*(n-1)*n*(2*n-1)); print1(numerator(B1[n+3])", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008
CROSSREFS
Sequence in context: A351508 A248703 A264903 * A330658 A034243 A183480
KEYWORD
nonn,easy,frac
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008
STATUS
approved