OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
FORMULA
Let {C(n)} be the sequence of rational numbers defined by the recurrence: 8*(n+1)*(2n+1)*(2n+3)*C(n+1) - 6*(2n+1)*(5n^2+5n+2)*C(n) + 24*n^3*C(n-1) + 2*n*(n-1)*(2n-1)*C(n-2) = 0 for n >= 0 with C(0) = 1 and C(n) = 0 if n < 0. Then a(n) is the numerator of C(n). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
PROG
(PARI) C=vector(100); C[3]=1; print1(C[3]", "); for(n=1, 30, C[n+3]=(6*(2*n-1)*(5*n^2-5*n+2)*C[n+2]-24*(n-1)^3*C[n+1]-2*(n-1)*(n-2)*(2*n-3)*C[n])/(8*n*(2*n-1)*(2*n+1)); print1(numerator(C[n+3])", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
STATUS
approved