|
|
A055246
|
|
At step number k >= 1 the 2^(k-1) open intervals that are erased from [0,1] in the Cantor middle-third set construction are I(k,n) = (a(n)/3^k, (1+a(n))/3^k), n=1..2^(k-1).
|
|
10
|
|
|
1, 7, 19, 25, 55, 61, 73, 79, 163, 169, 181, 187, 217, 223, 235, 241, 487, 493, 505, 511, 541, 547, 559, 565, 649, 655, 667, 673, 703, 709, 721, 727, 1459, 1465, 1477, 1483, 1513, 1519, 1531, 1537, 1621, 1627, 1639, 1645, 1675, 1681, 1693, 1699
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Related to A005836. Gives boundaries of open intervals that have to be erased in the Cantor middle-third set construction.
Let g(n) = Sum_{i=0..n} (i*binomial(n+i,i)^3*binomial(n,i)^2). Let b = {m>0 : g(m) != 0 (mod 3)}. Then b(n) = a(n). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 08 2004
Conjecture: Similarly to A191107, this increasing sequence is generated by the rules: a(1) = 1, and if x is in the sequence, then 3*x-2 and 3*x+4 are also in the sequence. - L. Edson Jeffery, Nov 17 2015
|
|
LINKS
|
Table of n, a(n) for n=1..48.
R. Stephan, Some divide-and-conquer sequences ...
R. Stephan, Table of generating functions
|
|
FORMULA
|
a(n) = 1+6*A005836(n-1), n >= 1.
a(n) = 1+3*A005823(n-1), n >= 1.
a(n+1) = A074938(n) + A074939(n); A074938: odd numbers in A005836, A074939: even numbers in A005836. - Philippe Deléham, Jul 10 2005
Conjecture: a(n) = 2*A191107(n) - 1 = 6*A003278(n) - 5 = (a((2*n-1)*2^(k-1))+2)/3^k, k>0. - L. Edson Jeffery, Nov 25 2015
|
|
EXAMPLE
|
k=1: (1/3, 2/3); k=2: (1/9, 2/9), (7/9, 8/9); k=3: (1/27, 2/27), (7/27, 8/27), (19/27, 20/27), (25/27, 26/27); ...
|
|
MATHEMATICA
|
(* (Conjectured) Choose rows large enough to guarantee that all terms < max are generated. *)
rows = 1000; max = 10^4; a[1] = {1}; i = 1; Do[a[n_] = {}; Do[If[1 < 3*a[n - 1][[k]] - 2 < max, AppendTo[a[n], 3*a[n - 1][[k]] - 2], Break]; If[3*a[n - 1][[k]] + 4 < max, AppendTo[a[n], 3*a[n - 1][[k]] + 4], Break], {k, Length[a[n - 1]]}]; If[a[n] == {}, Break, i++], {n, 2, 1000}]; a055246 = Take[Flatten[Table[a[n], {n, i}]], 48] (* L. Edson Jeffery, Nov 17 2015 *)
Join[{1}, 1 + 6 Accumulate[Table[(3^IntegerExponent[n, 2] + 1)/2, {n, 60}]]] (* Vincenzo Librandi, Nov 26 2015 *)
|
|
PROG
|
(PARI) g(n)=sum(i=0, n, i*binomial(n+i, i)^3*binomial(n, i)^2);
for (i=1, 2000, if(Mod(g(i), 3)<>0, print1(i, ", ")))
|
|
CROSSREFS
|
Cf. A003278, A005836, A005823, A055247.
Cf. A191107.
Sequence in context: A065749 A032642 A127633 * A003282 A006063 A181123
Adjacent sequences: A055243 A055244 A055245 * A055247 A055248 A055249
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Wolfdieter Lang, May 23 2000
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Nov 20 2015: used first comment to give more precise definition, and edited a comment at the suggestion of L. Edson Jeffery.
|
|
STATUS
|
approved
|
|
|
|