login
A074938
Odd numbers such that base 3 representation contains no 2.
5
1, 3, 9, 13, 27, 31, 37, 39, 81, 85, 91, 93, 109, 111, 117, 121, 243, 247, 253, 255, 271, 273, 279, 283, 325, 327, 333, 337, 351, 355, 361, 363, 729, 733, 739, 741, 757, 759, 765, 769, 811, 813, 819, 823, 837, 841, 847, 849, 973, 975, 981, 985, 999, 1003, 1009
OFFSET
0,2
COMMENTS
Odd numbers in A005836.
Numbers m such that coefficient of x^m equals -1 in Product_{k>=0} 1-x^(3^k).
Numbers k such that binomial(2k, k) == 2 (mod 3).
Sum of an odd number of distinct powers of 3. - Emeric Deutsch, Dec 03 2003
LINKS
Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
FORMULA
a(n) (mod 3) = A010059(n).
((a(n)-1)/2) (mod 3) = A010060(n) = (1/2)*{binomial(2*a(n)+1, a(n)) (mod 3)}.
MATHEMATICA
Select[Range[1, 1111, 2], Count[IntegerDigits[#, 3], 2]==0&] (* Harvey P. Dale, Dec 19, 2010 *)
CROSSREFS
Intersection of A005408 and A005836.
Sequence in context: A079994 A303964 A124825 * A057260 A107364 A014861
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Oct 04 2002; Nov 15 2003
STATUS
approved