OFFSET
1,2
COMMENTS
That is, there are no three elements A, B and C such that B - A = C - B.
Positions of 1's in Richard Stanley's Forest Fire sequence A309890. - N. J. A. Sloane, Dec 01 2019
Subtracting 1 from each term gives A005836 (ternary representation contains no 2's). - N. J. A. Sloane, Dec 01 2019
Difference sequence related to Gray code bit sequence (A001511). The difference patterns follows a similar repeating pattern (ABACABADABACABAE...), but each new value is the sum of the previous values, rather than simply 1 more than the maximum of the previous values. - Hal Burch (hburch(AT)cs.cmu.edu), Jan 12 2004
Sums of distinct powers of 3, translated by 1.
Also, Stanley sequence S(1): see OEIS Index under Stanley sequences (link below). - M. F. Hasler, Jan 18 2016
Named after the Hungarian-Australian mathematician George Szekeres (1911-2005). - Amiram Eldar, May 07 2021
If A_n=(a(1),a(2),...,a(2^n)), then A_(n+1)=(A_n,A_n+3^n). - Arie Bos, Jul 24 2022
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 164.
Richard K. Guy, Unsolved Problems in Number Theory, E10.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David W. Wilson, Table of n, a(n) for n = 1..10000 [a(1..1024) from T. D. Noe]
Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
Paul Erdős and Paul Turan, On some sequences of integers, J. London Math. Soc., 11 (1936), 261-264.
Joseph Gerver, James Propp and Jamie Simpson, Greedily partitioning the natural numbers into sets free of arithmetic progressions Proc. Amer. Math. Soc. 102 (1988), no. 3, 765-772.
Fanel Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sci. 16E, 237-240, 1997.
Henry Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
Gabor Korvin, Short note: Every large set of integers contains a three term arithmetic progression arXiv 1404.1557 [math.NT], Apr 6 2014.
Leo Moser, An Introduction to the Theory of Numbers, The Trillia Group, 2011 (written in 1957). See pp. 61-62.
James Propp and N. J. A. Sloane, Email, March 1994
Florentin Smarandache, Sequences of Numbers Involved in Unsolved Problems.
R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
Eric Weisstein's World of Mathematics, Smarandache Sequences.
FORMULA
a(2*k + 2) = a(2*k + 1) + 1, a(2^k + 1) = 2*a(2^k).
a(n) = b(n+1) with b(0) = 1, b(2*n) = 3*b(n)-2, b(2*n+1) = 3*b(n)-1. - Ralf Stephan, Aug 23 2003
G.f.: x/(1-x)^2 + x * Sum_{k>=1} 3^(k-1)*x^(2^k)/((1-x^(2^k))*(1-x)). - Ralf Stephan, Sep 10 2003, corrected by Robert Israel, May 25 2011
EXAMPLE
G.f. = x + 2*x^2 + 4*x^3 + 5*x^4 + 10*x^5 + 11*x^6 + 13*x^7 + 14*x^8 + 28*x^9 + ...
MAPLE
a:= proc(n) local m, r, b; m, r, b:= n-1, 1, 1;
while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*3 od; r
end:
seq(a(n), n=1..100); # Alois P. Heinz, Aug 17 2013
MATHEMATICA
Take[ Sort[ Plus @@@ Subsets[ Table[3^n, {n, 0, 6}]]] + 1, 58] (* Robert G. Wilson v, Oct 23 2004 *)
a[1] = 0; h = 180;
Table[a[3 k - 2] = a[k], {k, 1, h}];
Table[a[3 k - 1] = a[k], {k, 1, h}];
Table[a[3 k] = 1, {k, 1, h}];
Table[a[n], {n, 1, h}] (* A189820 *)
Flatten[Position[%, 0]] (* A003278 *)
Flatten[Position[%%, 1]] (* A189822 *)
Table[FromDigits[IntegerDigits[n, 2], 3] + 1, {n, 0, 57}] (* Amit Munje, Jun 03 2018 *)
PROG
(Perl) $nxt = 1; @list = (); for ($cnt = 0; $cnt < 1500; $cnt++) { while (exists $legal{$nxt}) { $nxt++; } print "$nxt "; last if ($nxt >= 1000000); for ($i = 0; $i <= $#list; $i++) { $t = 2*$nxt - $list[$i]; $legal{$t} = -1; } $cnt++; push @list, $nxt; $nxt++; } # Hal Burch
(PARI) a(n)=1+sum(i=1, n-1, (1+3^valuation(i, 2))/2) \\ Ralf Stephan, Jan 21 2014
(Python)
def A003278(n):
return int(format(n-1, 'b'), 3)+1 # Chai Wah Wu, Jan 04 2015
(Julia)
function a(n)
return 1 + parse(Int, bitstring(n-1), base=3)
end # Gabriel F. Lipnik, Apr 16 2021
CROSSREFS
Row 0 of array in A093682.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
Similar formula:
If A_n=(a(1),a(2),...,a(2^n)), then A_(n+1)=(A_n,A_n+4^n) produces A098871;
If A_n=(a(1),a(2),...,a(2^n)), then A_(n+1)=(A_n,A_n+2*3^n) produces A191106.
KEYWORD
nonn,nice,easy,changed
AUTHOR
STATUS
approved