The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098871 Sums of distinct powers of 4 plus 1. 1
 1, 2, 5, 6, 17, 18, 21, 22, 65, 66, 69, 70, 81, 82, 85, 86, 257, 258, 261, 262, 273, 274, 277, 278, 321, 322, 325, 326, 337, 338, 341, 342, 1025, 1026, 1029, 1030, 1041, 1042, 1045, 1046, 1089, 1090, 1093, 1094, 1105, 1106, 1109, 1110, 1281, 1282, 1285, 1286 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Lukasz Merta, Composition inverses of the variations of the Baum-Sweet sequence, arXiv:1803.00292 [math.NT], 2018. See u(n) p. 11. FORMULA a(n) = A000695(n) + 1. - Franklin T. Adams-Watters, Aug 17 2013 MAPLE a:= proc(n) local m, r, b; m, r, b:= n, 1, 1;       while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*4 od; r     end: seq(a(n), n=0..100); # Alois P. Heinz, Aug 17 2013 MATHEMATICA (* first do *) Needs["DiscreteMath`Combinatorica`"]; (* then *) Take[ Sort[ Plus @@@ Subsets[ Table[4^n, {n, 0, 5}]]] + 1, 50] (* Robert G. Wilson v, Oct 23 2004 *) Total/@Subsets[4^Range[0, 5], 10]+1//Union (* Harvey P. Dale, May 03 2019 *) CROSSREFS Cf. A003278. Sequence in context: A306885 A029939 A082198 * A227623 A146477 A166753 Adjacent sequences:  A098868 A098869 A098870 * A098872 A098873 A098874 KEYWORD nonn AUTHOR Tom C. Brown (tbrown(AT)sfu.ca), Oct 13 2004 EXTENSIONS More terms from Robert G. Wilson v, Oct 23 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 15:06 EDT 2020. Contains 337310 sequences. (Running on oeis4.)