login
A020654
Lexicographically earliest infinite increasing sequence of nonnegative numbers containing no 5-term arithmetic progression.
49
0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88, 90, 91, 92, 93, 125, 126, 127
OFFSET
1,3
COMMENTS
This is also the set of numbers with no "4" in their base-5 representation. In fact, for any prime p, the sequence consisting of numbers with no (p-1) in their base-p expansion is the same as the earliest sequence containing no p-term arithmetic progression. - Nathaniel Johnston, Jun 26-27 2011
LINKS
J. L. Gerver and L. T. Ramsey, Sets of integers with no long arithmetic progressions generated by the greedy algorithm, Math. Comp., 33 (1979), 1353-1359.
Samuel S. Wagstaff, Jr., On k-free sequences of integers, Math. Comp., 26 (1972), 767-771.
MAPLE
seq(`if`(numboccur(4, convert(n, base, 5))=0, n, NULL), n=0..127); # Nathaniel Johnston, Jun 27 2011
MATHEMATICA
Select[ Range[ 0, 100 ], (Count[ IntegerDigits[ #, 5 ], 4 ]==0)& ]
PROG
(PARI) is(n)=while(n>4, if(n%5==4, return(0)); n\=5); 1 \\ Charles R Greathouse IV, Feb 12 2017
(Python)
from sympy.ntheory.factor_ import digits
print([n for n in range(201) if digits(n, 5)[1:].count(4)==0]) # Indranil Ghosh, May 23 2017
(Julia)
function a(n)
m, r, b = n, 0, 1
while m > 0
m, q = divrem(m, 4)
r += b * q
b *= 5
end
r end; [a(n) for n in 0:66] |> println # Peter Luschny, Jan 03 2021
CROSSREFS
Cf. A023717.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
Sequence in context: A087069 A023737 A037459 * A182777 A214988 A028804
KEYWORD
nonn,easy
EXTENSIONS
Added "infinite" to definition. - N. J. A. Sloane, Sep 28 2019
STATUS
approved