login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020658
Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 7.
29
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88, 89, 90, 99
OFFSET
1,2
COMMENTS
This is different from A047304: note the gap between 41 and 50. - M. F. Hasler, Oct 07 2014
LINKS
FORMULA
a(n) = A020657(n)+1. - M. F. Hasler, Oct 07 2014
MAPLE
Noap:= proc(N, m)
# N terms of earliest increasing seq with no m-term arithmetic progression
local A, forbid, n, c, ds, j;
A:= Vector(N):
A[1..m-1]:= <($1..m-1)>:
forbid:= {m}:
for n from m to N do
c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
A[n]:= c;
ds:= convert(map(t -> c-t, A[m-2..n-1]), set);
for j from m-2 to 2 by -1 do
ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]), set);
if ds = {} then break fi;
od;
forbid:= select(`>`, forbid, c) union map(`+`, ds, c);
od:
convert(A, list)
end proc:
Noap(100, 7); # Robert Israel, Jan 04 2016
MATHEMATICA
Select[Range[0, 100], FreeQ[IntegerDigits[#, 7], 6]&] + 1 (* Jean-François Alcover, Aug 18 2023, after M. F. Hasler *)
CROSSREFS
Cf. A047304.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
Sequence in context: A187396 A020659 A047304 * A195178 A043092 A023801
KEYWORD
nonn
STATUS
approved