

A182777


Beatty sequence for 3sqrt(3).


2



1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 79, 81, 82, 83, 84, 86
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

(1) 3 is the only number x for which the numbers r=xsqrt(x) and s=x+sqrt(x) satisfy the Beatty equation
1/r + 1/s = 1.
(2) Let u=2sqrt(3) and v=1. Jointly rank {j*u} and {k*v} as in the first comment at A182760; a(n) is the position of n*u.
(3) The complement of A182777 is A182778, which gives the positions of the natural numbers k in the joint ranking.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000


FORMULA

a(n) = floor(n*(3sqrt(3))).


MATHEMATICA

Table[Floor[(3Sqrt[3]) n], {n, 68}]


PROG

(MAGMA) [Floor(n*(3Sqrt(3))): n in [1..80]]; // Vincenzo Librandi, Oct 25 2011
(PARI) vector(80, n, floor(n*(3sqrt(3)))) \\ G. C. Greubel, Nov 23 2018
(Sage) [floor(n*(3sqrt(3))) for n in (1..80)] # G. C. Greubel, Nov 23 2018


CROSSREFS

Cf. A182760, A182778.
Sequence in context: A023737 A037459 A020654 * A214988 A028804 A191894
Adjacent sequences: A182774 A182775 A182776 * A182778 A182779 A182780


KEYWORD

nonn


AUTHOR

Clark Kimberling, Nov 30 2010


EXTENSIONS

Typo in formula by Vincenzo Librandi, Oct 25 2011


STATUS

approved



