OFFSET
1,2
COMMENTS
(1) 3 is the only number x for which the numbers r=x-sqrt(x) and s=x+sqrt(x) satisfy the Beatty equation
1/r + 1/s = 1.
(2) Let u=2-sqrt(3) and v=1. Jointly rank {j*u} and {k*v} as in the first comment at A182760; a(n) is the position of n*u.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = floor(n*(3-sqrt(3))).
MATHEMATICA
Table[Floor[(3-Sqrt[3]) n], {n, 68}]
PROG
(Magma) [Floor(n*(3-Sqrt(3))): n in [1..80]]; // Vincenzo Librandi, Oct 25 2011
(PARI) vector(80, n, floor(n*(3-sqrt(3)))) \\ G. C. Greubel, Nov 23 2018
(Sage) [floor(n*(3-sqrt(3))) for n in (1..80)] # G. C. Greubel, Nov 23 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 30 2010
EXTENSIONS
Typo in formula by Vincenzo Librandi, Oct 25 2011
STATUS
approved