The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003280 Numerators of coefficients of Green function for cubic lattice. (Formerly M4664) 1
 1, 9, 175, 2025, 102235, 1356047, 37160123, 6771931925, 772428184055, 189690563847015, 105217453376898775, 1548913291275244825, 2112565685454158552975, 1658173107161491979625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008, Table of n, a(n) for n = 0..23 FORMULA Let B0(n) be the sequence of rational numbers defined by the recurrence: 16n(n+1)(2n+1)B0(n+1)-n(60n^2+9)B0(n)+3(2n-1)^3B0(n-1)+(n-1)(2n-1)(2n-3)B0(n-2)=0 n>=1 with B0(0)=1 and B0(1)=9/32. Then a(n) is the numerator of B0(n) - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008 PROG (PARI) B0=vector(100); B0[3]=1; B0[4]=9/32; print1("1, 9, "); for(n=2, 30, B0[n+3]=((n-1)*(60*(n-1)^2+9)*B0[n+2]-3*(2*n-3)^3*B0[n+1]-(n-2)*(2*n-3)*(2*n-5)*B0[n])/(16*(n-1)*n*(2*n-1)); print1(numerator(B0[n+3])", ")) - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008 CROSSREFS Sequence in context: A336728 A305465 A027956 * A201536 A141359 A141363 Adjacent sequences:  A003277 A003278 A003279 * A003281 A003282 A003283 KEYWORD nonn,easy,frac AUTHOR EXTENSIONS More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)