login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A305465
a(n) = Sum_{k=0..floor(n/2)} ((n-k)!/k!)*binomial(n-k,k)*n^(n-2*k).
3
1, 1, 9, 174, 6433, 387045, 34372513, 4223468872, 685727920641, 142133068151865, 36615156774045001, 11474421446955693006, 4298048476279871328289, 1896322606147540294800349, 973319784969445114237699713, 575000041101937659730069884960
OFFSET
0,3
LINKS
FORMULA
a(n) ~ n! * n^n. - Vaclav Kotesovec, Jun 03 2018
MATHEMATICA
Join[{1}, Table[Sum[(n-k)!/k! Binomial[n-k, k]n^(n-2k), {k, 0, Floor[n/2]}], {n, 20}]] (* Harvey P. Dale, Sep 22 2019 *)
PROG
(PARI) {a(n) = sum(k=0, n/2, ((n-k)!/k!)*binomial(n-k, k)*n^(n-2*k))}
CROSSREFS
Main diagonal of A305401.
Sequence in context: A357348 A357345 A336728 * A027956 A003280 A201536
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 02 2018
STATUS
approved