login
A005823
Numbers whose ternary expansion contains no 1's.
(Formerly M1567)
61
0, 2, 6, 8, 18, 20, 24, 26, 54, 56, 60, 62, 72, 74, 78, 80, 162, 164, 168, 170, 180, 182, 186, 188, 216, 218, 222, 224, 234, 236, 240, 242, 486, 488, 492, 494, 504, 506, 510, 512, 540, 542, 546, 548, 558, 560, 564, 566, 648, 650, 654, 656, 666, 668, 672, 674
OFFSET
1,2
COMMENTS
The set of real numbers between 0 and 1 that contain no 1's in their ternary expansion is the well-known Cantor set with Hausdorff dimension log 2 / log 3.
Complement of A081606. - Reinhard Zumkeller, Mar 23 2003
Numbers k such that the k-th Apery number is congruent to 1 (mod 3) (cf. A005258). - Benoit Cloitre, Nov 30 2003
Numbers k such that the k-th central Delannoy number is congruent to 1 (mod 3) (cf. A001850). - Benoit Cloitre, Nov 30 2003
Numbers k such that there exists a permutation p_1, ..., p_k of 1, ..., k such that i + p_i is a power of 3 for every i. - Ray Chandler, Aug 03 2004
Subsequence of A125292. - Reinhard Zumkeller, Nov 26 2006
The first 2^n terms of the sequence could be obtained using the Cantor process for the segment [0,3^n-1]. E.g., for n=2 we have [0,{1},2,{3,4,5},6,{7},8]. The numbers outside of braces are the first 4 terms of the sequence. Therefore the terms of the sequence could be called "Cantor's numbers". - Vladimir Shevelev, Jun 13 2008
Mahler proved that positive a(n) is never a square. - Michel Marcus, Nov 12 2012
Define t: Z -> P(R) so that t(k) is the translated Cantor ternary set spanning [k, k+1], and let T be the union of t(a(n)) for all n. T = T * 3 = T / 3 is the closure of the Cantor ternary set under multiplication by 3. - Peter Munn, Oct 30 2019
REFERENCES
K. J. Falconer, The Geometry of Fractal Sets, Cambridge, 1985; p. 14.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Winston de Greef, Table of n, a(n) for n = 1..16384 (first 1024 terms from T. D. Noe)
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., Vol. 98, No. 2 (1992), pp. 163-197.
J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., Vol. 98, No. 2 (1992), pp. 163-197.
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
Sajed Haque, Chapter 3.4 of Discriminators of Integer Sequences, 2017, See p. 45.
Sajed Haque and Jeffrey Shallit, Discriminators and k-Regular Sequences, arXiv:1605.00092 [cs.DM], 2016.
Clark Kimberling, Affinely recursive sets and orderings of languages, Discrete Math., Vol. 274, No. 1-3 (2004), pp. 147-160.
Kurt Mahler, The representation of squares to the base 3, Acta Arith., Vol. 53, Issue 1 (1989), pp. 99-106.
M. Mendes France and A. J. van der Poorten, From geometry to Euler identities, Theoret. Comput. Sci., Vol. 65, No. 2 (1989), pp. 213-220.
Eric Weisstein's World of Mathematics, Cantor Set.
FORMULA
a(n) = 2 * A005836(n).
a(2n) = 3*a(n)+2, a(2n+1) = 3*a(n+1), a(1) = 0.
a(n) = Sum_{k = 1..n} 1 + 3^A007814(k). - Philippe Deléham, Jul 09 2005
A125291(a(n)) = 1 for n>0. - Reinhard Zumkeller, Nov 26 2006
From Reinhard Zumkeller, Mar 02 2008: (Start)
A062756(a(n)) = 0.
If the offset were changed to zero, then: a(0)=0, a(n+1)=f(a(n)+1,f(a(n)+1) where f(x,y) = if x<3 and x<>1 then y else if x mod 3 = 1 then f(y+1,y+1) else f(floor(x/3),y). (End)
G.f. g(x) satisfies g(x) = 3*g(x^2)*(1+1/x) + 2*x^2/(1-x^2). - Robert Israel, Jan 04 2015
Sum_{n>=2} 1/a(n) = 1.341426555483087715426958452292349687410838545707857407585878304836140592352... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022
MAPLE
a:= proc(n) option remember;
`if`(n=1, 0, `if`(irem (n, 2, 'q')=0, 3*a(q)+2, 3*a(q+1)))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Apr 19 2012
MATHEMATICA
Select[ Range[ 0, 729 ], (Count[ IntegerDigits[ #, 3 ], 1 ]==0)& ]
Select[Range[0, 700], DigitCount[#, 3, 1]==0&] (* Harvey P. Dale, Mar 12 2016 *)
PROG
(PARI) is(n)=while(n, if(n%3==1, return(0), n\=3)); 1 \\ Charles R Greathouse IV, Apr 20 2012
(PARI) a(n)=n=binary(n-1); sum(i=1, #n, 2*n[i]*3^(#n-i)) \\ Charles R Greathouse IV, Apr 20 2012
(PARI) a(n)=2*fromdigits(binary(n-1), 3) \\ Charles R Greathouse IV, Aug 24 2016
(Python)
def A005823(n):
return 2*int(format(n-1, 'b'), 3) # Chai Wah Wu, Jan 04 2015
CROSSREFS
Twice A005836.
Cf. A088917 (characteristic function), A306556.
Sequence in context: A053355 A233572 A370864 * A259026 A178758 A024431
KEYWORD
nonn,easy,nice,look,base
EXTENSIONS
More terms from Sascha Kurz, Mar 24 2002
Offset corrected by N. J. A. Sloane, Mar 02 2008. This may require some of the formulas to be adjusted.
STATUS
approved