login
A233572
In balanced ternary notation, if prepending same numbers of zeros, reverse digits of a(n) equals to -a(n)
4
0, 2, 6, 8, 18, 20, 24, 26, 32, 54, 56, 60, 72, 78, 80, 96, 104, 146, 162, 164, 168, 180, 182, 216, 224, 234, 240, 242, 260, 288, 302, 312, 320, 338, 416, 438, 486, 488, 492, 504, 540, 546, 560, 648, 656, 672, 702, 720, 726, 728, 780, 800, 864, 896, 906, 936
OFFSET
1,2
COMMENTS
A233571 is a subset of this sequence.
EXAMPLE
In balanced ternary notation, 18 = (1T00)_bt, where we use T to represent -1. Patching two zeros before it, (1T00)_bt=(001T00)_bt. The reverse digits of (001T00)_bt is (00T100)_bt = -18. So 18 is in this sequence.
MATHEMATICA
BTDigits[m_Integer, g_] :=
Module[{n = m, d, sign, t = g},
If[n != 0, If[n > 0, sign = 1, sign = -1; n = -n];
d = Ceiling[Log[3, n]]; If[3^d - n <= ((3^d - 1)/2), d++];
While[Length[t] < d, PrependTo[t, 0]]; t[[Length[t] + 1 - d]] = sign;
t = BTDigits[sign*(n - 3^(d - 1)), t]]; t];
BTrteQ[n_Integer] :=
Module[{t, trim = n/3^IntegerExponent[n, 3]},
t = BTDigits[trim, {0}]; DeleteDuplicates[t + Reverse[t]] == {0}];
sb = Select[Range[0, 950], BTrteQ[#] &]
KEYWORD
nonn,base
AUTHOR
Lei Zhou, Dec 13 2013
STATUS
approved