login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233569
Canonical parts power representation of n: n = concatenation((1)^k_1,(10)^k_2,...).
6
0, 1, 2, 3, 4, 6, 6, 7, 8, 12, 10, 14, 12, 14, 14, 15, 16, 24, 20, 28, 20, 26, 26, 30, 24, 28, 26, 30, 28, 30, 30, 31, 32, 48, 40, 56, 36, 52, 52, 60, 40, 52, 42, 58, 52, 58, 58, 62, 48, 56, 52, 60, 52, 58, 58, 62, 56, 60, 58, 62, 60, 62, 62, 63, 64, 96, 80
OFFSET
0,3
COMMENTS
Two numbers n_1 and n_2 are called c-equivalent (n_1~n_2) if in the binary they have the same parts of the form 10...0 with k>=0 zeros up to a permutation of them. For example, 6~5, 14~13~11, 12~9.
Denote by (10...0)^k the concatenation k the same consecutive parts (10...0). By agreement, (10...0)^0 denotes the absence of the corresponding part in the binary of n. Let n contains k_i parts with i-1 zeros, i=1,2,... . Then n~concatenation((1)^k_1, (10)^k_2,(100)^k_3,...). The latter number is a(n). Thus a(n_1)=a(n_2) if and only if n_1~n_2. For example, since a(19)=28 which is in binary 11100, then the canonical representation of 19 is (1)^2[*](100), where [*] means concatenation. Analogously, since a(23)=30 which in binary 11110, then the canonical representation of 23 is (1)^3[*](10).
As a natural application, consider a notion of parts power divisor of canonical representation of n. We consider parts power divisors only of the form a(m).
If the canonical representation of n is a(n)=(1)^k_1[*](10)^k_2[*](100)^k_3[*]..., then number a(m) is a parts power divisor of a(n), iff a(m)=(1)^t_1[*](10)^t_2[*](100)^t_3[*]... with all t_i<=k_i. In particular, 0 (with all t_i=0) is parts power divisor of every a(n). From this it follows that the number of primes power divisors of a(n) is (k_1+1)*(k_2+1)*... This number is an upper estimate for A124771(n).
MATHEMATICA
bitPatt[n_]:=bitPatt[n]=Split[IntegerDigits[n, 2], #1>#2||#2==0&]; Map[FromDigits[Flatten[Sort[bitPatt[#]]], 2]&, Range[0, 33]] (* Peter J. C. Moses, Dec 14 2013 *)
CROSSREFS
Cf. A114994.
Sequence in context: A175808 A334666 A163380 * A246593 A256999 A331857
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Dec 13 2013
EXTENSIONS
More terms from Peter J. C. Moses, Dec 15 2013
STATUS
approved