The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A233010 In balanced ternary notation, either a palindrome or becomes a palindrome if trailing 0's are omitted. 7
 0, 1, 3, 4, 7, 9, 10, 12, 13, 16, 21, 27, 28, 30, 36, 39, 40, 43, 48, 52, 61, 63, 73, 81, 82, 84, 90, 91, 103, 108, 112, 117, 120, 121, 124, 129, 144, 156, 160, 183, 189, 196, 208, 219, 243, 244, 246, 252, 270, 273, 280, 292, 309, 324, 328, 336, 351, 360, 363 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Symmetric strings of -1, 0, and 1, including as many leading as trailing zeros. LINKS Lei Zhou, Table of n, a(n) for n = 1..10000 EXAMPLE 10 is included since in balanced ternary notation 10 = (101)_bt is a palindrome; 144 is included since 144 = (1TT100)_bt, where we use T to represent -1.  When trailing zeros removed, 1TT1 is a palindrome. MATHEMATICA BTDigits[m_Integer, g_] := Module[{n = m, d, sign, t = g},   If[n != 0, If[n > 0, sign = 1, sign = -1; n = -n];    d = Ceiling[Log[3, n]]; If[3^d - n <= ((3^d - 1)/2), d++];    While[Length[t] < d, PrependTo[t, 0]]; t[[Length[t] + 1 - d]] = sign;    t = BTDigits[sign*(n - 3^(d - 1)), t]]; t]; BTpaleQ[n_Integer] := Module[{t, trim = n/3^IntegerExponent[n, 3]},   t = BTDigits[trim, {0}]; t == Reverse[t]]; Select[Range[0, 363], BTpaleQ[#] &] CROSSREFS Cf. A002113, A061917, A006995, A057890, A134027 Sequence in context: A300789 A026225 A026140 * A263488 A344416 A330178 Adjacent sequences:  A233007 A233008 A233009 * A233011 A233012 A233013 KEYWORD nonn,base AUTHOR Lei Zhou, Dec 13 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 21:14 EST 2022. Contains 350600 sequences. (Running on oeis4.)