login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233010
In balanced ternary notation, either a palindrome or becomes a palindrome if trailing 0's are omitted.
6
0, 1, 3, 4, 7, 9, 10, 12, 13, 16, 21, 27, 28, 30, 36, 39, 40, 43, 48, 52, 61, 63, 73, 81, 82, 84, 90, 91, 103, 108, 112, 117, 120, 121, 124, 129, 144, 156, 160, 183, 189, 196, 208, 219, 243, 244, 246, 252, 270, 273, 280, 292, 309, 324, 328, 336, 351, 360, 363
OFFSET
1,3
COMMENTS
Symmetric strings of -1, 0, and 1, including as many leading as trailing zeros.
EXAMPLE
10 is included since in balanced ternary notation 10 = (101)_bt is a palindrome;
144 is included since 144 = (1TT100)_bt, where we use T to represent -1. When trailing zeros removed, 1TT1 is a palindrome.
MATHEMATICA
BTDigits[m_Integer, g_] :=
Module[{n = m, d, sign, t = g},
If[n != 0, If[n > 0, sign = 1, sign = -1; n = -n];
d = Ceiling[Log[3, n]]; If[3^d - n <= ((3^d - 1)/2), d++];
While[Length[t] < d, PrependTo[t, 0]]; t[[Length[t] + 1 - d]] = sign;
t = BTDigits[sign*(n - 3^(d - 1)), t]]; t];
BTpaleQ[n_Integer] := Module[{t, trim = n/3^IntegerExponent[n, 3]},
t = BTDigits[trim, {0}]; t == Reverse[t]];
Select[Range[0, 363], BTpaleQ[#] &]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Lei Zhou, Dec 13 2013
STATUS
approved