OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
This sequence is conjectured to be the Heinz numbers of integer partitions in which the odd parts appear as many times in even as in odd positions.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000
Solomon W. Golomb, Tiling with polyominoes, Journal of Combinatorial Theory, 1-2 (1966), 280-296.
Wikipedia, Domino tiling
EXAMPLE
Sequence of integer partitions whose Young diagram can be tiled by dominos begins: (), (2), (11), (4), (22), (31), (211), (6), (1111), (8), (42), (51), (33), (222), (411).
MAPLE
a:= proc(n) option remember; local k; for k from 1+
`if`(n=1, 0, a(n-1)) while (l-> add(`if`(l[i]::odd,
(-1)^i, 0), i=1..nops(l))<>0)(sort(map(i->
numtheory[pi](i[1])$i[2], ifactors(k)[2]))) do od; k
end:
seq(a(n), n=1..100); # Alois P. Heinz, May 22 2018
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Total[(-1)^Flatten[Position[primeMS[#], _?OddQ]]]===0&] (* Conjectured *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 12 2018
STATUS
approved