This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A045931 Number of partitions of n with equal number of even and odd parts. 18
 1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 5, 7, 9, 11, 16, 18, 25, 28, 41, 44, 62, 70, 94, 107, 140, 163, 207, 245, 302, 361, 440, 527, 632, 763, 904, 1090, 1285, 1544, 1812, 2173, 2539, 3031, 3538, 4202, 4896, 5793, 6736, 7934, 9221, 10811, 12549, 14661, 16994, 19780 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS The trivariate g.f. with x marking weight (i.e., sum of the parts), t marking number of odd parts and s marking number of even parts, is 1/product((1-tx^(2j-1))(1-sx^(2j)), j=1..infinity). - Emeric Deutsch, Mar 30 2006 a(n) = A000041(n)-A171967(n) = A130780(n)-A108950(n) = A171966(n)-A108949(n). - Reinhard Zumkeller, Jan 21 2010 LINKS David W. Wilson, Table of n, a(n) for n = 0..1000 FORMULA G.f.: Sum_{k>=0} x^(3*k)/Product_{i=1..k} (1-x^(2*i))^2. - Vladeta Jovovic, Aug 18 2007 EXAMPLE a(9) = 5 because we have [8,1], [7,2], [6,3], [5,4] and [2,2,2,1,1,1]. MAPLE g:=1/product((1-t*x^(2*j-1))*(1-s*x^(2*j)), j=1..30): gser:=simplify(series(g, x=0, 56)): P[0]:=1: for n from 1 to 53 do P[n]:=subs(s=1/t, coeff(gser, x^n)) od: seq(coeff(t*P[n], t), n=0..53); # Emeric Deutsch, Mar 30 2006 MATHEMATICA p[n_] := p[n] = Select[IntegerPartitions[n], Count[#, _?OddQ] == Count[#, _?EvenQ] &]; t = Table[p[n], {n, 0, 10}] (* partitions of n with # odd parts = # even parts *) TableForm[t] (* partitions, vertical format *) Table[Length[p[n]], {n, 0, 30}] (* A045931 *) (* Peter J. C. Moses, Mar 10 2014 *) CROSSREFS Column k=0 of A240009. Sequence in context: A151533 A128100 A035579 * A079974 A102517 A062951 Adjacent sequences:  A045928 A045929 A045930 * A045932 A045933 A045934 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 19:34 EDT 2018. Contains 316530 sequences. (Running on oeis4.)