login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195017 If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime and c_k >= 0 then a(n) = Sum_{k >= 1} c_k*((-1)^(k-1)). 55
0, 1, -1, 2, 1, 0, -1, 3, -2, 2, 1, 1, -1, 0, 0, 4, 1, -1, -1, 3, -2, 2, 1, 2, 2, 0, -3, 1, -1, 1, 1, 5, 0, 2, 0, 0, -1, 0, -2, 4, 1, -1, -1, 3, -1, 2, 1, 3, -2, 3, 0, 1, -1, -2, 2, 2, -2, 0, 1, 2, -1, 2, -3, 6, 0, 1, 1, 3, 0, 1, -1, 1, 1, 0, 1, 1, 0, -1, -1, 5, -4, 2, 1, 0, 2, 0, -2, 4, -1, 0, -2, 3, 0, 2, 0, 4, 1, -1, -1, 4, -1, 1, 1, 2, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Let p(n,x) be the completely additive polynomial-valued function such that p(1,x) = 0 and p(prime(n),x) = x^(n-1), like is defined in A206284 (although here we are not limited to just irreducible polynomials). Then a(n) is the value of the polynomial encoded in such a manner by n, when it is evaluated at x=-1. - The original definition rewritten and clarified by Antti Karttunen, Oct 03 2018
Positions of 0 give the values of n for which the polynomial p(n,x) is divisible by x+1. For related sequences, see the Mathematica section.
Also the number of odd prime indices of n minus the number of even prime indices of n (both counted with multiplicity), where a prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. - Gus Wiseman, Oct 24 2023
LINKS
FORMULA
Totally additive with a(p^e) = e * (-1)^(1+PrimePi(p)), where PrimePi(n) = A000720(n). - Antti Karttunen, Oct 03 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} = (-1)^(primepi(p)+1)/(p-1) = Sum_{k>=1} (-1)^(k+1)/A006093(k) = A078437 + Sum_{k>=1} (-1)^(k+1)/A036689(k) = 0.6339266524059... . - Amiram Eldar, Sep 29 2023
a(n) = A257991(n) - A257992(n). - Gus Wiseman, Oct 24 2023
EXAMPLE
The sequence can be read from a list of the polynomials:
p(n,x) with x = -1, gives a(n)
------------------------------------------
p(1,x) = 0 0
p(2,x) = 1x^0 1
p(3,x) = x -1
p(4,x) = 2x^0 2
p(5,x) = x^2 1
p(6,x) = 1+x 0
p(7,x) = x^3 -1
p(8,x) = 3x^0 3
p(9,x) = 2x -2
p(10,x) = x^2 + 1 2.
(The list runs through all the polynomials whose coefficients are nonnegative integers.)
MATHEMATICA
b[n_] := Table[x^k, {k, 0, n}];
f[n_] := f[n] = FactorInteger[n]; z = 200;
t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]]
== Prime[k], f[n][[m, 2]], 0];
u = Table[Apply[Plus,
Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1,
Length[f[n]]}]], {n, 1, z}];
p[n_, x_] := u[[n]].b[-1 + Length[u[[n]]]]
Table[p[n, x] /. x -> 0, {n, 1, z/2}] (* A007814 *)
Table[p[2 n, x] /. x -> 0, {n, 1, z/2}] (* A001511 *)
Table[p[n, x] /. x -> 1, {n, 1, z}] (* A001222 *)
Table[p[n, x] /. x -> 2, {n, 1, z}] (* A048675 *)
Table[p[n, x] /. x -> 3, {n, 1, z}] (* A090880 *)
Table[p[n, x] /. x -> -1, {n, 1, z}] (* A195017 *)
PROG
(PARI) A195017(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * (-1)^(1+primepi(f[i, 1])))); } \\ Antti Karttunen, Oct 03 2018
CROSSREFS
For other evaluation functions of such encoded polynomials, see A001222, A048675, A056239, A090880, A248663.
Zeros are A325698, distinct A325700.
For sum instead of count we have A366749 = A366531 - A366528.
A000009 counts partitions into odd parts, ranked by A066208.
A035363 counts partitions into even parts, ranked by A066207.
A112798 lists prime indices, reverse A296150, sum A056239.
A257991 counts odd prime indices, even A257992.
A300061 lists numbers with even sum of prime indices, odd A300063.
Sequence in context: A241063 A340251 A286957 * A078806 A173438 A103493
KEYWORD
sign,easy
AUTHOR
Clark Kimberling, Feb 06 2012
EXTENSIONS
More terms, name changed and example-section edited by Antti Karttunen, Oct 03 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 13:11 EDT 2024. Contains 371913 sequences. (Running on oeis4.)