OFFSET
1,1
COMMENTS
First differences of A195020.
a(n) is also the length of the n-th edge of a square spiral in which the first two edges are the legs of the primitive Pythagorean triple [3, 4, 5]. The spiral contains infinitely many Pythagorean triples in which the hypotenuses are the positives A008587. Zero together with partial sums give A195020; the vertices of the spiral.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Ron Knott, Pythagorean triangles and triples
Eric Weisstein's World of Mathematics, Pythagorean Triple
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
FORMULA
pair(3*n, 4*n).
a(2*n-1) = 3*n, a(2*n) = 4*n. - M. F. Hasler, Sep 08 2011
G.f.: x*(3+4*x) / ( (x-1)^2*(1+x)^2 ). - R. J. Mathar, Sep 09 2011
From Bruno Berselli, Sep 12 2011: (Start)
a(n) = ((n-3)*(-1)^n + 7*n + 3)/4.
a(n) + a(n+1) = A047355(n+2). (End)
E.g.f.: (1/4)*((3 + 7*x)*exp(x) - (3 + x)*exp(-x)). - G. C. Greubel, Aug 19 2017
MATHEMATICA
Table[((n-3)*(-1)^n + 7*n + 3)/4, {n, 1, 50}] (* G. C. Greubel, Aug 19 2017 *)
PROG
(PARI) a(n)=(n+1)\2*(4-n%2) \\ M. F. Hasler, Sep 08 2011
(Magma) [((n-3)*(-1)^n+7*n+3)/4: n in [1..60]]; // Vincenzo Librandi, Sep 12 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 07 2011, Sep 12 2011
STATUS
approved