OFFSET
1,4
COMMENTS
This sequence is an exception to my usual rule that when every other term of a sequence is 0 then those 0's should be omitted. In this case we would get A001511. - N. J. A. Sloane
To construct the sequence: start with 0,1, concatenate to get 0,1,0,1. Add + 1 to last term gives 0,1,0,2. Concatenate those 4 terms to get 0,1,0,2,0,1,0,2. Add + 1 to last term etc. - Benoit Cloitre, Mar 06 2003
The sequence is invariant under the following two transformations: increment every element by one (1, 2, 1, 3, 1, 2, 1, 4, ...), put a zero in front and between adjacent elements (0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, ...). The intermediate result is A001511. - Ralf Hinze (ralf(AT)informatik.uni-bonn.de), Aug 26 2003
Fixed point of the morphism 0->01, 1->02, 2->03, 3->04, ..., n->0(n+1), ..., starting from a(1) = 0. - Philippe Deléham, Mar 15 2004
Fixed point of the morphism 0->010, 1->2, 2->3, ..., n->(n+1), .... - Joerg Arndt, Apr 29 2014
a(n) is also the number of times to repeat a step on an even number in the hailstone sequence referenced in the Collatz conjecture. - Alex T. Flood (whiteangelsgrace(AT)gmail.com), Sep 22 2006
Let F(n) be the n-th Fermat number (A000215). Then F(a(r-1)) divides F(n)+2^k for r = k mod 2^n and r != 1. - T. D. Noe, Jul 12 2007
The following relation holds: 2^A007814(n)*(2*A025480(n-1)+1) = A001477(n) = n. (See functions hd, tl and cons in [Paul Tarau 2009].)
a(n) is the number of 0's at the end of n when n is written in base 2.
a(n+1) is the number of 1's at the end of n when n is written in base 2. - M. F. Hasler, Aug 25 2012
Shows which bit to flip when creating the binary reflected Gray code (bits are numbered from the right, offset is 0). That is, A003188(n) XOR A003188(n+1) == 2^A007814(n). - Russ Cox, Dec 04 2010
The sequence is squarefree (in the sense of not containing any subsequence of the form XX) [Allouche and Shallit]. Of course it contains individual terms that are squares (such as 4). - Comment expanded by N. J. A. Sloane, Jan 28 2019
a(n) is the number of zero coefficients in the n-th Stern polynomial, A125184. - T. D. Noe, Mar 01 2011
Lemma: For n < m with r = a(n) = a(m) there exists n < k < m with a(k) > r. Proof: We have n=b2^r and m=c2^r with b < c both odd; choose an even i between them; now a(i2^r) > r and n < i2^r < m. QED. Corollary: Every finite run of consecutive integers has a unique maximum 2-adic valuation. - Jason Kimberley, Sep 09 2011
a(n-2) is the 2-adic valuation of A000166(n) for n >= 2. - Joerg Arndt, Sep 06 2014
a(n) = number of 1's in the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} p_j-th prime (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(24)=3; indeed, the partition having Heinz number 24 = 2*2*2*3 is [1,1,1,2]. - Emeric Deutsch, Jun 04 2015
a(n+1) is the difference between the two largest parts in the integer partition having viabin number n (0 is assumed to be a part). Example: a(20) = 2. Indeed, we have 19 = 10011_2, leading to the Ferrers board of the partition [3,1,1]. For the definition of viabin number see the comment in A290253. - Emeric Deutsch, Aug 24 2017
Apart from being squarefree, as noted above, the sequence has the property that every consecutive subsequence contains at least one number an odd number of times. - Jon Richfield, Dec 20 2018
a(n+1) is the 2-adic valuation of Sum_{e=0..n} u^e = (1 + u + u^2 + ... + u^n), for any u of the form 4k+1 (A016813). - Antti Karttunen, Aug 15 2020
{a(n)} represents the "first black hat" strategy for the game of countably infinitely many hats, with a probability of success of 1/3; cf. the Numberphile link below. - Frederic Ruget, Jun 14 2021
a(n) is the least nonnegative integer k for which there does not exist i+j=n and a(i)=a(j)=k (cf. A322523). - Rémy Sigrist and Jianing Song, Aug 23 2022
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 27.
K. Atanassov, On the 37th and the 38th Smarandache Problems, Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria, Vol. 5 (1999), No. 2, 83-85.
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Joerg Arndt, Subset-lex: did we miss an order?, arXiv:1405.6503 [math.CO], 2014.
K. Atanassov, On Some of Smarandache's Problems
Alain Connes, Caterina Consani, and Henri Moscovici, Zeta zeros and prolate wave operators, arXiv:2310.18423 [math.NT], 2023.
Dario T. de Castro, P-adic Order of Positive Integers via Binomial Coefficients, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 22, Paper A61, 2022.
Mathieu Guay-Paquet and Jeffrey Shallit, Avoiding Squares and Overlaps Over the Natural Numbers, (2009) Discrete Math., 309 (2009), 6245-6254.
Mathieu Guay-Paquet and Jeffrey Shallit, Avoiding Squares and Overlaps Over the Natural Numbers, arXiv:0901.1397 [math.CO], 2009.
M. Hassani, Equations and inequalities involving v_p(n!), J. Inequ. Pure Appl. Math. 6 (2005) vol. 2, #29.
A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 61. Book's website
R. Hinze, Concrete stream calculus: An extended study, J. Funct. Progr. 20 (5-6) (2010) 463-535, doi, Section 3.2.3.
Clark Kimberling, Affinely recursive sets and orderings of languages, Discrete Math., 274 (2004), 147-160.
Francis Laclé, 2-adic parity explorations of the 3n+ 1 problem, hal-03201180v2 [cs.DM], 2021.
Shuo Li, Palindromic length sequence of the ruler sequence and of the period-doubling sequence, arXiv:2007.08317 [math.CO], 2020.
Nicolas Mallet, Trial for a proof of the Syracuse conjecture, arXiv preprint arXiv:1507.05039 [math.GM], 2015.
S. Mazzanti, Plain Bases for Classes of Primitive Recursive Functions, Mathematical Logic Quarterly, 48 (2002).
Matthew Andres Moreno, Luis Zaman, and Emily Dolson, Structured Downsampling for Fast, Memory-efficient Curation of Online Data Streams, arXiv:2409.06199 [cs.DS], 2024. See p. 5.
Sascha Mücke, Coding Nuggets Faster QUBO Brute-Force Solving, TU Dortmund Univ. (Germany 2023).
S. Northshield, An Analogue of Stern's Sequence for Z[sqrt(2)], Journal of Integer Sequences, 18 (2015), #15.11.6.
Numberphile, Hat Problems - Numberphile
Giovanni Pighizzini, Limited Automata: Properties, Complexity and Variants, International Conference on Descriptional Complexity of Formal Systems (DCFS 2019) Descriptional Complexity of Formal Systems, Lecture Notes in Computer Science (LNCS, Vol. 11612) Springer, Cham, 57-73.
Simon Plouffe, On the values of the functions ... [zeta and Gamma] ..., arXiv preprint arXiv:1310.7195 [math.NT], 2013.
A. Postnikov (MIT) and B. Sagan, What power of two divides a weighted Catalan number?, arXiv:math/0601339 [math.CO], 2006.
Lara Pudwell and Eric Rowland, Avoiding fractional powers over the natural numbers, arXiv:1510.02807 [math.CO] (2015). Also Electronic Journal of Combinatorics, Volume 25(2) (2018), #P2.27. See Section 2.
Ville Salo, Decidability and Universality of Quasiminimal Subshifts, arXiv preprint arXiv:1411.6644 [math.DS], 2014.
Vladimir Shevelev, Several results on sequences which are similar to the positive integers, arXiv:0904.2101 [math.NT], 2014.
F. Smarandache, Only Problems, Not Solutions!.
Ralf Stephan, Some divide-and-conquer sequences ...
Ralf Stephan, Table of generating functions
Paul Tarau, A Groupoid of Isomorphic Data Transformations. Calculemus 2009, 8th International Conference, MKM 2009, pp. 170-185, Springer, LNAI 5625.
P. M. B. Vitanyi, An optimal simulation of counter machines, SIAM J. Comput, 14:1(1985), 1-33.
Wikipedia, P-adic order.
FORMULA
a(n) = A001511(n) - 1.
a(n) = 0 if n is odd, otherwise 1 + a(n/2). - Reinhard Zumkeller, Aug 11 2001
Sum_{k=1..n} a(k) = n - A000120(n). - Benoit Cloitre, Oct 19 2002
G.f.: A(x) = Sum_{k>=1} x^(2^k)/(1-x^(2^k)). - Ralf Stephan, Apr 10 2002
G.f. A(x) satisfies A(x) = A(x^2) + x^2/(1-x^2). A(x) = B(x^2) = B(x) - x/(1-x), where B(x) is the g.f. for A001151. - Franklin T. Adams-Watters, Feb 09 2006
Totally additive with a(p) = 1 if p = 2, 0 otherwise.
Dirichlet g.f.: zeta(s)/(2^s-1). - Ralf Stephan, Jun 17 2007
Define 0 <= k <= 2^n - 1; binary: k = b(0) + 2*b(1) + 4*b(2) + ... + 2^(n-1)*b(n-1); where b(x) are 0 or 1 for 0 <= x <= n - 1; define c(x) = 1 - b(x) for 0 <= x <= n - 1; Then: a(k) = c(0) + c(0)*c(1) + c(0)*c(1)*c(2) + ... + c(0)*c(1)...c(n-1); a(k+1) = b(0) + b(0)*b(1) + b(0)*b(1)*b(2) + ... + b(0)*b(1)...b(n-1). - Arie Werksma (werksma(AT)tiscali.nl), May 10 2008
Sum_{k=1..n} (-1)^A000120(n-k)*a(k) = (-1)^(A000120(n)-1)*(A000120(n) - A000035(n)). - Vladimir Shevelev, Mar 17 2009
For n>=1, a(A004760(n+1)) = a(n). - Vladimir Shevelev, Apr 15 2009
2^(a(n)) = A006519(n). - Philippe Deléham, Apr 22 2009
a(n!) = n - A000120(n). - Vladimir Shevelev, Jul 20 2009
v_{2}(n) = Sum_{r>=1} (r / 2^(r+1)) Sum_{k=0..2^(r+1)-1} e^(2(k*Pi*i(n+2^r))/(2^(r+1))). - A. Neves, Sep 28 2010, corrected Oct 04 2010
a(n) mod 2 = A096268(n-1). - Robert G. Wilson v, Jan 18 2012
a(A005408(n)) = 1; a(A016825(n)) = 3; A017113(a(n)) = 5; A051062(a(n)) = 7; a(n) = (A037227(n)-1)/2. - Reinhard Zumkeller, Jun 30 2012
a((2*n-1)*2^p) = p, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 04 2013
a(n) = A067255(n,1). - Reinhard Zumkeller, Jun 11 2013
a(n) = log_2(n - (n AND n-1)). - Gary Detlefs, Jun 13 2014
a(n) = 1 + A000120(n-1) - A000120(n), where A000120 is the Hamming weight function. - Stanislav Sykora, Jul 14 2014
A053398(n,k) = a(A003986(n-1,k-1)+1); a(n) = A053398(n,1) = A053398(n,n) = A053398(2*n-1,n) = Min_{k=1..n} A053398(n,k). - Reinhard Zumkeller, Aug 04 2014
a((2*x-1)*2^n) = a((2*y-1)*2^n) for positive n, x and y. - Juri-Stepan Gerasimov, Aug 04 2016
a(n) = A000005(n)/(A000005(2*n) - A000005(n)) - 1. - conjectured by Velin Yanev, Jun 30 2017, proved by Nicholas Stearns, Sep 11 2017
Equivalently to above formula, a(n) = A183063(n) / A001227(n), i.e., a(n) is the number of even divisors of n divided by number of odd divisors of n. - Franklin T. Adams-Watters, Oct 31 2018
a(n)*(n mod 4) = 2*floor(((n+1) mod 4)/3). - Gary Detlefs, Feb 16 2019
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - Amiram Eldar, Jul 11 2020
a(n) = 2*Sum_{j=1..floor(log_2(n))} frac(binomial(n, 2^j)*2^(j-1)/n). - Dario T. de Castro, Jul 08 2022
a(n) = floor((gcd(n, 2^n)^(n+1) mod (2^(n+1)-1)^2)/(2^(n+1)-1)) (see Lemma 3.4 from Mazzanti's 2002 article). - Lorenzo Sauras Altuzarra, Mar 10 2024
a(n) = 1 - A088705(n). - Chai Wah Wu, Sep 18 2024
EXAMPLE
2^3 divides 24, so a(24)=3.
From Omar E. Pol, Jun 12 2009: (Start)
Triangle begins:
0;
1,0;
2,0,1,0;
3,0,1,0,2,0,1,0;
4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0;
5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0;
6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,...
(End)
MAPLE
ord := proc(n) local i, j; if n=0 then return 0; fi; i:=0; j:=n; while j mod 2 <> 1 do i:=i+1; j:=j/2; od: i; end proc: seq(ord(n), n=1..111);
MATHEMATICA
Table[IntegerExponent[n, 2], {n, 64}] (* Eric W. Weisstein *)
IntegerExponent[Range[64], 2] (* Eric W. Weisstein, Feb 01 2024 *)
p=2; Array[ If[ Mod[ #, p ]==0, Select[ FactorInteger[ # ], Function[ q, q[ [ 1 ] ]==p ], 1 ][ [ 1, 2 ] ], 0 ]&, 96 ]
DigitCount[BitXor[x, x - 1], 2, 1] - 1; a different version based on the same concept: Floor[Log[2, BitXor[x, x - 1]]] (* Jaume Simon Gispert (jaume(AT)nuem.com), Aug 29 2004 *)
Nest[Join[ #, ReplacePart[ #, Length[ # ] -> Last[ # ] + 1]] &, {0, 1}, 5] (* N. J. Gunther, May 23 2009 *)
Nest[ Flatten[# /. a_Integer -> {0, a + 1}] &, {0}, 7] (* Robert G. Wilson v, Jan 17 2011 *)
PROG
(PARI) A007814(n)=valuation(n, 2);
(Haskell)
a007814 n = if m == 0 then 1 + a007814 n' else 0
where (n', m) = divMod n 2
-- Reinhard Zumkeller, Jul 05 2013, May 14 2011, Apr 08 2011
(Haskell)
a007814 n | odd n = 0 | otherwise = 1 + a007814 (n `div` 2)
-- Walt Rorie-Baety, Mar 22 2013
(R) sapply(1:100, function(x) sum(gmp::factorize(x)==2)) # Christian N. K. Anderson, Jun 20 2013
(Magma) [Valuation(n, 2): n in [1..120]]; // Bruno Berselli, Aug 05 2013
(Python)
import math
def a(n): return int(math.log(n - (n & n - 1), 2)) # Indranil Ghosh, Apr 18 2017
(Python)
def A007814(n): return (~n & n-1).bit_length() # Chai Wah Wu, Jul 01 2022
(Scheme) (define (A007814 n) (let loop ((n n) (e 0)) (if (odd? n) e (loop (/ n 2) (+ 1 e))))) ;; Antti Karttunen, Oct 06 2017
CROSSREFS
KEYWORD
nonn,nice,easy,changed
AUTHOR
John Tromp, Dec 11 1996
EXTENSIONS
Formula index adapted to the offset of A025480 by R. J. Mathar, Jul 20 2010
Edited by Ralf Stephan, Feb 08 2014
STATUS
approved