OFFSET
1,5
COMMENTS
LINKS
T. D. Noe, Table of n, a(n) for n=1..1000
Joseph Rosenbaum, Elementary Problem E319, American Mathematical Monthly, volume 45, number 10, December 1938, pages 694-696. (The A indices in P at equations 1' and 2' for p=5.)
FORMULA
G.f.: Sum_{k>=0} x^(5^k)/(1-x^5^k). - Ralf Stephan, Apr 12 2002
Multiplicative with a(p^e) = e+1 if p = 5, 1 otherwise.
a(n) = -Sum_{d|n} mu(5d)*tau(n/d). - Benoit Cloitre, Jun 21 2007
Dirichlet g.f.: zeta(s)/(1-1/5^s). - R. J. Mathar, Feb 09 2011
a(n) = A112765(5n). - R. J. Mathar, Jul 17 2012
a(5n) = 1 + a(n). a(5n+k) = 1 for k = 1..4. - Robert Israel, Dec 07 2015
G.f. satisfies A(x^5) = A(x) - x/(1-x). - Robert Israel, Dec 08 2015
a(n) = A112765(n) + 1. - Amiram Eldar, Sep 21 2020
Sum_{k=1..n} a(k) ~ 5*n/4. - Vaclav Kotesovec, Sep 21 2020
EXAMPLE
a(5) = 2 since 5^2 exactly divides 5 times 5;
a(25) = 3 since 5^3 exactly divides 5 times 25;
a(125) = 4 since 5^4 exactly divides 5 times 125.
MAPLE
seq(padic:-ordp(5*n, 5), n=1..1000); # Robert Israel, Dec 07 2015
MATHEMATICA
max = 1000; s = (1/x)*Sum[x^(5^k)/(1-x^5^k), {k, 0, Log[5, max] // Ceiling }] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 04 2015 *)
Table[IntegerExponent[n, 5] + 1, {n, 1, 100}] (* Amiram Eldar, Sep 21 2020 *)
PROG
(PARI) a(n)=-sumdiv(n, d, moebius(5*d)*numdiv(n/d)) \\ Benoit Cloitre, Jun 21 2007
(PARI) a(n)=valuation(5*n, 5) \\ Anders Hellström, Dec 04 2015
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Alford Arnold, Jun 25 2000
STATUS
approved