login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364358
Number of divisors of n of the form 4*k+1 that are at most sqrt(n).
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2
OFFSET
1,25
FORMULA
G.f.: Sum_{k>=0} x^(4*k+1)^2 / (1 - x^(4*k+1)).
MATHEMATICA
Table[Count[Divisors[n], _?(# <= Sqrt[n] && MemberQ[{1}, Mod[#, 4]] &)], {n, 100}]
nmax = 100; CoefficientList[Series[Sum[x^(4 k + 1)^2/(1 - x^(4 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 21 2023
STATUS
approved