|
|
A001826
|
|
Number of divisors of n of the form 4k+1.
|
|
14
|
|
|
1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 4, 1, 1, 1, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 3, 1, 4, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 1, 2, 2, 1, 2, 3, 2, 1, 2, 4, 1, 2, 1, 2, 4, 2, 1, 2, 1, 2, 1, 2, 2, 3, 3, 2, 2, 1, 2, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Not multiplicative: a(21) <> a(3)*a(7), for example. - R. J. Mathar, Sep 15 2015
|
|
LINKS
|
Nick Hobson, Table of n, a(n) for n = 1..10000
Michael Gilleland, Some Self-Similar Integer Sequences
|
|
FORMULA
|
G.f.: Sum_{n>0} x^n/(1-x^(4n)) = Sum_{n>=0} x^(4n+1)/(1-x^(4n+1)).
a(n) = A001227(n) - A001842(n). - Reinhard Zumkeller, Apr 18 2006
|
|
MAPLE
|
d:=proc(r, m, n) local i, t1; t1:=0; for i from 1 to n do if n mod i = 0 and i-r mod m = 0 then t1:=t1+1; fi; od: t1; end; # no. of divisors i of n with i == r mod m
A001826 := proc(n)
add(`if`(modp(d, 4)=1, 1, 0), d=numtheory[divisors](n)) ;
end proc: # R. J. Mathar, Sep 15 2015
|
|
MATHEMATICA
|
a[n_] := Count[Divisors[n], d_ /; Mod[d, 4] == 1]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Nov 26 2013 *)
|
|
PROG
|
(PARI) a(n)=if(n<1, 0, sumdiv(n, d, d%4==1))
|
|
CROSSREFS
|
Cf. A001842.
Sequence in context: A317934 A353376 A279848 * A003641 A355241 A165190
Adjacent sequences: A001823 A001824 A001825 * A001827 A001828 A001829
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Better definition from Michael Somos, Apr 26 2004
|
|
STATUS
|
approved
|
|
|
|