OFFSET
1,4
COMMENTS
a(n) is the denominator of certain rational valued sequences f(n), that have been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)), with f(1) = 1, where b(n) is a sequence like A034444 and A037445.
Many of the same observations as given in A046644 apply also here. Note that A011371 shares with A005187 the property that A011371(x+y) <= A011371(x) + A011371(y), with equivalence attained only when A004198(x,y) = 0, and also the property that A011371(2^(k+1)) = 1 + 2*A011371(2^k).
The following list gives such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
Wikipedia, Dirichlet convolution
FORMULA
PROG
CROSSREFS
KEYWORD
nonn,frac,mult
AUTHOR
Antti Karttunen, Aug 12 2018
STATUS
approved