|
|
A299150
|
|
Denominators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).
|
|
18
|
|
|
1, 1, 2, 2, 2, 2, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 8, 2, 4, 4, 2, 2, 4, 8, 2, 16, 4, 2, 4, 2, 8, 4, 2, 4, 16, 2, 2, 4, 4, 2, 4, 2, 4, 16, 2, 2, 16, 8, 8, 4, 4, 2, 16, 4, 4, 4, 2, 2, 8, 2, 2, 16, 16, 4, 4, 2, 4, 4, 4, 2, 16, 2, 2, 16, 4, 4, 4, 2, 16, 128, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
FORMULA
|
Multiplicative with a(2^e) = 2^A011371(e), a(p^e) = 2^A005187(e) for odd primes p.
Multiplicative with a(p^e) = 2^(((1+A000035(p))*e)-A000120(e)) for all primes p.
(End)
|
|
EXAMPLE
|
Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
|
|
MATHEMATICA
|
nn=50;
sys=Table[n==Sum[a[d]*a[n/d], {d, Divisors[n]}], {n, nn}];
Denominator[Array[a, nn]/.Solve[sys, Array[a, nn]][[2]]]
f[p_, e_] := 2^((1 + Mod[p, 2])*e - DigitCount[e, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
|
|
PROG
|
(PARI) a(n)={my(v=factor(n)[, 2]); denominator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
(PARI) A299150(n) = { my(f = factor(n), m=1); for(i=1, #f~, m *= 2^(((1+(f[i, 1]%2))*f[i, 2]) - hammingweight(f[i, 2]))); (m); }; \\ Antti Karttunen, Sep 03 2018
|
|
CROSSREFS
|
Cf. A000010, A003958, A005187, A006519, A007431, A011371, A018804, A023900, A029935, A037445, A046643, A046644, A165825, A257098, A298971, A299119, A299149 (numerators), A299151, A317848, A317929, A317932, A318314, A318512, A318653, A318681.
Cf. A318440 (the 2-adic valuation).
|
|
KEYWORD
|
nonn,frac,mult
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|