login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299147
Numbers k such that sigma(k), sigma(k^2) and sigma(k^3) are primes.
2
4, 64, 289, 253541929, 499477801, 1260747049, 14450203681, 25391466409, 256221229489, 333456586849, 341122579249, 459926756041, 911087431081, 928731181849, 1142288550841, 2880002461249, 2923070670601, 3000305515321, 4103999343889, 4123226708329, 4258977385441
OFFSET
1,1
COMMENTS
All terms are squares (proof in A023194).
Sequence {b(n)} of the smallest numbers m such that sigma(m^k) are primes for all k = 1..n: 2, 2, 4, ... (if fourth term exists, it must be greater than 10^16).
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..12775 (n = 1..997 from Robert G. Wilson v)
EXAMPLE
4 is in the sequence because all sigma(4) = 7, sigma(4^2) = 31 and sigma(4^3) = 127 are primes.
MAPLE
N:= 10^14: # to get all terms <= N
Res:= NULL:
p:= 1:
do
p:= nextprime(p);
if p^2 > N then break fi;
for k from 2 by 2 while p^k <= N do
if isprime(k+1) and isprime(2*k+1) and isprime(3*k+1) then
q1:= (p^(k+1)-1)/(p-1);
q2:= (p^(2*k+1)-1)/(p-1);
q3:= (p^(3*k+1)-1)/(p-1);
if isprime(q1) and isprime(q2) and isprime(q3) then
Res:= Res, p^k;
fi
fi
od
od:
sort([Res]); # Robert Israel, Feb 22 2018
MATHEMATICA
k = 1; A299147 = {}; While[k < 4260000000000, If[Union@ PrimeQ@ DivisorSigma[1, {k, k^2, k^3}] == {True}, AppendTo[A299147, k]]; k++]; A299147 (* Robert G. Wilson v, Feb 10 2018 *)
PROG
(Magma) [n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^2)) and IsPrime(SumOfDivisors(n^3))]
(PARI) isok(n) = isprime(sigma(n)) && isprime(sigma(n^2)) && isprime(sigma(n^3)); \\ Michel Marcus, Feb 05 2018
CROSSREFS
Subsequence of A232444.
Sequence in context: A110258 A056982 A030994 * A141046 A264055 A222557
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Feb 03 2018
STATUS
approved