OFFSET
1,1
COMMENTS
Sequence b(n) of the smallest numbers m such that sigma(m^k) are all primes for k = 1..n: 2, 2, 4, ... (if fourth term exists, it must be bigger than 10^16).
a(n) is of the form p^e where p, e+1 and e*n+1 are primes. e=1 is possible only in the case p=2. - Robert Israel, Feb 06 2018
LINKS
Robert Israel, Table of n, a(n) for n = 1..79
FORMULA
a(n) >= A279094(n).
EXAMPLE
For n = 3; a(3) = 4 because 4 is the smallest number such that sigma(4) = 7 and sigma(4^3) = 127 are both primes.
MAPLE
f:= proc(n, Nmin, Nmax) local p, e, M, Res;
M:= Nmax;
Res:= -1;
e:= 0;
do
e:= nextprime(e+1)-1;
if 2^e > M then return Res fi;
if not isprime(e*n+1) then next fi;
p:= floor(Nmin^(1/e));
do
p:= nextprime(p);
if p^e > M then break fi;
if e = 1 and p > 2 then break fi;
if isprime((p^(e+1)-1)/(p-1)) and isprime((p^(e*n+1)-1)/(p-1)) then
Res:= p^e;
M:= p^e;
break
fi
od
od;
end proc:
g:= proc(n) local Nmin, Nmax, v;
Nmax:= 1;
do
Nmin:= Nmax;
Nmax:= Nmax*10^3;
v:= f(n, Nmin, Nmax);
if v > 0 then return v fi;
od;
end proc:
seq(g(n), n=1..50); # Robert Israel, Feb 06 2018
MATHEMATICA
Array[Block[{k = 2}, While[! AllTrue[DivisorSigma[1, #] & /@ {k, k^#}, PrimeQ], k++]; k] &, 10] (* Michael De Vlieger, Feb 05 2018 *)
PROG
(Magma) [Min([n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^k))]): k in [2..12]]
(PARI) a(n) = {my(k=1); while (!(isprime(sigma(k)) && isprime(sigma(k^n))), k++); k; } \\ Michel Marcus, Feb 05 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Feb 03 2018
EXTENSIONS
a(13) to a(32) from Robert Israel, Feb 06 2018
STATUS
approved