login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299148
a(n) is the smallest number k such that sigma(k) and sigma(k^n) are both primes.
1
2, 2, 4, 2, 25, 2, 262144, 4, 4, 64, 734449, 2, 3100870943041, 9066121, 4, 2, 729, 2, 214355670008317962105386619478205641151753401, 5041, 64, 16, 25, 10651330026288961, 16610312161, 2607021481, 38950081, 1817762776525603445521, 5331481, 2, 2160067977820518171249529658520145004718584607049, 21203610154988994565561
OFFSET
1,1
COMMENTS
Sequence b(n) of the smallest numbers m such that sigma(m^k) are all primes for k = 1..n: 2, 2, 4, ... (if fourth term exists, it must be bigger than 10^16).
a(n) is of the form p^e where p, e+1 and e*n+1 are primes. e=1 is possible only in the case p=2. - Robert Israel, Feb 06 2018
LINKS
FORMULA
a(n) >= A279094(n).
EXAMPLE
For n = 3; a(3) = 4 because 4 is the smallest number such that sigma(4) = 7 and sigma(4^3) = 127 are both primes.
MAPLE
f:= proc(n, Nmin, Nmax) local p, e, M, Res;
M:= Nmax;
Res:= -1;
e:= 0;
do
e:= nextprime(e+1)-1;
if 2^e > M then return Res fi;
if not isprime(e*n+1) then next fi;
p:= floor(Nmin^(1/e));
do
p:= nextprime(p);
if p^e > M then break fi;
if e = 1 and p > 2 then break fi;
if isprime((p^(e+1)-1)/(p-1)) and isprime((p^(e*n+1)-1)/(p-1)) then
Res:= p^e;
M:= p^e;
break
fi
od
od;
end proc:
g:= proc(n) local Nmin, Nmax, v;
Nmax:= 1;
do
Nmin:= Nmax;
Nmax:= Nmax*10^3;
v:= f(n, Nmin, Nmax);
if v > 0 then return v fi;
od;
end proc:
seq(g(n), n=1..50); # Robert Israel, Feb 06 2018
MATHEMATICA
Array[Block[{k = 2}, While[! AllTrue[DivisorSigma[1, #] & /@ {k, k^#}, PrimeQ], k++]; k] &, 10] (* Michael De Vlieger, Feb 05 2018 *)
PROG
(Magma) [Min([n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^k))]): k in [2..12]]
(PARI) a(n) = {my(k=1); while (!(isprime(sigma(k)) && isprime(sigma(k^n))), k++); k; } \\ Michel Marcus, Feb 05 2018
CROSSREFS
Sequence in context: A333595 A227509 A279094 * A129243 A013551 A252040
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Feb 03 2018
EXTENSIONS
a(13) to a(32) from Robert Israel, Feb 06 2018
STATUS
approved