This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141046 a(n) = 4*n^4. 8
 0, 4, 64, 324, 1024, 2500, 5184, 9604, 16384, 26244, 40000, 58564, 82944, 114244, 153664, 202500, 262144, 334084, 419904, 521284, 640000, 777924, 937024, 1119364, 1327104, 1562500, 1827904, 2125764, 2458624, 2829124, 3240000, 3694084, 4194304, 4743684, 5345344 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Nonnegative integers a(n) such that (-a(n))^(1/4) is a Gaussian integer, since (n + n*i)^4 = -4*n^4 For n > 1, a(n) + k^4 is not prime for any k. - Derek Orr, May 31 2014 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = 4*n^4. a(n) = A008586(A000583(n)) = A000290(A005843(A000290(n))). - Reinhard Zumkeller, Jan 25 2012 G.f.: 4*x*(1 + x)*(1 + 10*x + x^2)/(1 - x)^5. - Chai Wah Wu, Jun 22 2016 From G. C. Greubel, Jun 22 2016: (Start) a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). E.g.f.: 4*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). (End) a(n) = A001105(n)^2. - Bruce J. Nicholson, Apr 03 2017 MATHEMATICA Table[4 n^4, {n, 0, 20}] PROG (Haskell) a141046 = (* 4) . (^ 4)  -- Reinhard Zumkeller, Jan 25 2012 (PARI) a(n)=4*n^4 \\ Charles R Greathouse IV, Jan 26 2012 CROSSREFS Sequence in context: A056982 A030994 A299147 * A264055 A222557 A249483 Adjacent sequences:  A141043 A141044 A141045 * A141047 A141048 A141049 KEYWORD easy,nonn AUTHOR Fredrik Johansson, Jul 31 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 12:49 EDT 2019. Contains 325159 sequences. (Running on oeis4.)