OFFSET
0,2
COMMENTS
Nonnegative integers a(n) such that (-a(n))^(1/4) is a Gaussian integer, since (n + n*i)^4 = -4*n^4
For n > 1, a(n) + k^4 is not prime for any k. - Derek Orr, May 31 2014
Suppose the vertices of a triangle are (T(n), T(n+j)), (T(n+2*j), T(n+3*j)) and (T(n+4*j), T(n+5*j)) where T(n) is the n-th triangular number. Then the area of this triangle will be a(j). - Charlie Marion, Mar 06 2021
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = 4*n^4.
G.f.: 4*x*(1 + x)*(1 + 10*x + x^2)/(1 - x)^5. - Chai Wah Wu, Jun 22 2016
From G. C. Greubel, Jun 22 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: 4*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). (End)
a(n) = A001105(n)^2. - Bruce J. Nicholson, Apr 03 2017
From Amiram Eldar, Jan 29 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^4/360.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/2880.
Product_{n>=1} (1 + 1/a(n)) = 2*cosh(Pi/2)^2/Pi^2.
Product_{n>=1} (1 - 1/a(n)) = 2*sin(Pi/sqrt(2))*sinh(Pi/sqrt(2))/Pi^2. (End)
MATHEMATICA
Table[4 n^4, {n, 0, 20}]
PROG
(Haskell)
a141046 = (* 4) . (^ 4) -- Reinhard Zumkeller, Jan 25 2012
(PARI) a(n)=4*n^4 \\ Charles R Greathouse IV, Jan 26 2012
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Fredrik Johansson, Jul 31 2008
STATUS
approved