Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Jan 21 2022 05:06:49
%S 4,64,289,253541929,499477801,1260747049,14450203681,25391466409,
%T 256221229489,333456586849,341122579249,459926756041,911087431081,
%U 928731181849,1142288550841,2880002461249,2923070670601,3000305515321,4103999343889,4123226708329,4258977385441
%N Numbers k such that sigma(k), sigma(k^2) and sigma(k^3) are primes.
%C All terms are squares (proof in A023194).
%C Sequence {b(n)} of the smallest numbers m such that sigma(m^k) are primes for all k = 1..n: 2, 2, 4, ... (if fourth term exists, it must be greater than 10^16).
%H Chai Wah Wu, <a href="/A299147/b299147.txt">Table of n, a(n) for n = 1..12775</a> (n = 1..997 from Robert G. Wilson v)
%e 4 is in the sequence because all sigma(4) = 7, sigma(4^2) = 31 and sigma(4^3) = 127 are primes.
%p N:= 10^14: # to get all terms <= N
%p Res:= NULL:
%p p:= 1:
%p do
%p p:= nextprime(p);
%p if p^2 > N then break fi;
%p for k from 2 by 2 while p^k <= N do
%p if isprime(k+1) and isprime(2*k+1) and isprime(3*k+1) then
%p q1:= (p^(k+1)-1)/(p-1);
%p q2:= (p^(2*k+1)-1)/(p-1);
%p q3:= (p^(3*k+1)-1)/(p-1);
%p if isprime(q1) and isprime(q2) and isprime(q3) then
%p Res:= Res, p^k;
%p fi
%p fi
%p od
%p od:
%p sort([Res]); # _Robert Israel_, Feb 22 2018
%t k = 1; A299147 = {}; While[k < 4260000000000, If[Union@ PrimeQ@ DivisorSigma[1, {k, k^2, k^3}] == {True}, AppendTo[A299147, k]]; k++]; A299147 (* _Robert G. Wilson v_, Feb 10 2018 *)
%o (Magma) [n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^2)) and IsPrime(SumOfDivisors(n^3))]
%o (PARI) isok(n) = isprime(sigma(n)) && isprime(sigma(n^2)) && isprime(sigma(n^3)); \\ _Michel Marcus_, Feb 05 2018
%Y Subsequence of A232444.
%Y Cf. A000203, A055638, A279094, A279096, A299153.
%K nonn
%O 1,1
%A _Jaroslav Krizek_, Feb 03 2018