login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037445 Number of infinitary divisors (or i-divisors) of n. 36
1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 8, 2, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 4, 2, 8, 2, 8, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

S. R. Finch, Unitarism and infinitarism.

J. O. M. Pedersen, Tables of Aliquot Cycles

Eric Weisstein's World of Mathematics, Infinitary Divisor

FORMULA

Multiplicative with a(p^e) = 2^A000120(e). - David W. Wilson, Sep 01 2001

Let n=q_1*...*q_k, where q_1,...,q_k are different terms of A050376. Then a(n)=2^k (the number of subsets of a set with k elements is 2^k). - Vladimir Shevelev, Feb 19 2011.

a(n) = product(A000079(A000120(A124010(n,k))): k=1..A0001221(n)). - Reinhard Zumkeller, Mar 19 2013

EXAMPLE

If n = 8: 8 = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8; so a(8) = 4.

n=90=2*5*9, where 2,5,9 are in A050376; so a(90)=2^3=8.

MAPLE

A037445 := proc(n)

    local a, p;

    a := 1 ;

    for p in ifactors(n)[2] do

        a := a*2^wt(p[2]) ;

    end do:

    a ;

end proc: # R. J. Mathar, May 16 2016

MATHEMATICA

Table[Length@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@

Flatten[Outer[z, Sequence @@ bitty /@

Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 240}]

bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]

y[n_] := Select[Range[0, n], BitOr[n, # ] == n & ] divisors[Infinity][1] := {1} divisors[Infinity][n_] := Sort[Flatten[Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^y[m])]]] Length /@ divisors[Infinity] /@ Range[105] - Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005

a[1] = 1; a[n_] := Times @@ Flatten[ 2^DigitCount[#, 2, 1]&  /@ FactorInteger[n][[All, 2]] ]; Table[a[n], {n, 1, 105}] (* Jean-Fran├žois Alcover, Aug 19 2013, after Reinhard Zumkeller *)

PROG

(PARI) A037445(n) = factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2])) \\ Andrew Lelechenko, May 10 2014

(Haskell)

a037445 = product . map (a000079 . a000120) . a124010_row

-- Reinhard Zumkeller, Mar 19 2013

CROSSREFS

Cf. A007358, A007357, A038148, A049417, A004607.

Sequence in context: A046927 A084718 A154851 * A186643 A270438 A003036

Adjacent sequences:  A037442 A037443 A037444 * A037446 A037447 A037448

KEYWORD

nonn,nice,easy,mult

AUTHOR

Yasutoshi Kohmoto

EXTENSIONS

Corrected and extended by Naohiro Nomoto, Jun 21 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 05:39 EST 2016. Contains 278841 sequences.