login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037445 Number of infinitary divisors (or i-divisors) of n. 27
1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 8, 2, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 4, 2, 8, 2, 8, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

S. R. Finch, Unitarism and infinitarism.

J. O. M. Pedersen, Tables of Aliquot Cycles

Eric Weisstein's World of Mathematics, Infinitary Divisor

FORMULA

Multiplicative with a(p^e) = 2^A000120(e). - David W. Wilson, Sep 01, 2001

Let n=q_1*...*q_k, where q_1,...,q_k are different terms of A050376. Then a(n)=2^k (the number of subsets of a set with k elements is 2^k). - Vladimir Shevelev, Feb 19 2011.

a(n) = product(A000079(A000120(A124010(n,k))): k=1..A0001221(n)). - Reinhard Zumkeller, Mar 19 2013

EXAMPLE

If n = 8: 8 = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8; so a(8) = 4.

n=90=2*5*9, where 2,5,9 are in A050376; so a(90)=2^3=8.

MATHEMATICA

Table[Length@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@

Flatten[Outer[z, Sequence @@ bitty /@

Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 240}]

bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]

y[n_] := Select[Range[0, n], BitOr[n, # ] == n & ] divisors[Infinity][1] := {1} divisors[Infinity][n_] := Sort[Flatten[Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^y[m])]]] Length /@ divisors[Infinity] /@ Range[105] - Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005

a[1] = 1; a[n_] := Times @@ Flatten[ 2^DigitCount[#, 2, 1]&  /@ FactorInteger[n][[All, 2]] ]; Table[a[n], {n, 1, 105}] (* Jean-Fran├žois Alcover, Aug 19 2013, after Reinhard Zumkeller *)

PROG

(Haskell)

a037445 = product . map (a000079 . a000120) . a124010_row

-- Reinhard Zumkeller, Mar 19 2013

CROSSREFS

Cf. A007358, A007357, A038148, A049417, A004607.

Sequence in context: A046927 A084718 A154851 * A186643 A003036 A089818

Adjacent sequences:  A037442 A037443 A037444 * A037446 A037447 A037448

KEYWORD

nonn,nice,easy,mult

AUTHOR

Yasutoshi Kohmoto (zbi74583(AT)boat.zero.ad.jp)

EXTENSIONS

Corrected and extended by Naohiro Nomoto, Jun 21 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 24 05:31 EDT 2014. Contains 240953 sequences.