login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077609
Triangle in which n-th row lists infinitary divisors of n.
63
1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 25, 1, 2, 13, 26, 1, 3, 9, 27, 1, 4, 7, 28, 1, 29, 1
OFFSET
1,3
COMMENTS
The first difference from the triangle A222266 (bi-unitary divisors of n) is in row n = 16; indeed, the 16th row of A222266 is (1, 2, 8, 16) while the 16th of this sequence here is (1, 16). - Bernard Schott, Mar 10 2023
The concept of infinitary divisors was introduced by Cohen (1990). - Amiram Eldar, Mar 09 2024
LINKS
Graeme L. Cohen, On an integer's infinitary divisors, Mathematics of Computation, Vol. 54, No. 189 (1990), pp. 395-411.
Graeme L. Cohen and Peter Hagis, Jr., Arithmetic functions associated with the infinitary divisors of an integer, Internat. J. Math. Math. Sci. 16 (2) (1993) 373-384.
Eric Weisstein's World of Mathematics, Infinitary Divisor.
EXAMPLE
The first few rows are:
1;
1, 2;
1, 3;
1, 4;
1, 5;
1, 2, 3, 6;
1, 7;
1, 2, 4, 8;
1, 9;
1, 2, 5, 10;
1, 11;
1, 3, 4, 12;
1, 13;
1, 2, 7, 14;
1, 3, 5, 15;
1, 16;
1, 17;
MAPLE
# see the function idivisors() in A049417. # R. J. Mathar, Oct 05 2017
MATHEMATICA
f[x_] := If[x == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] ; Array[f, 30] // Flatten (* Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005 *) (* edited by Michael De Vlieger, Jun 07 2016 *)
PROG
(Haskell)
import Data.List ((\\))
a077609 n k = a077609_row n !! (k-1)
a077609_row n = filter
(\d -> d == 1 || null (a213925_row d \\ a213925_row n)) $ a027750_row n
a077609_tabf = map a077609_row [1..]
-- Reinhard Zumkeller, Jul 10 2013
(PARI) isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
row(n) = {d = divisors(n); f = factor(n); idiv = []; for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus, Feb 15 2016
CROSSREFS
Cf. A027750, A037445 (row lengths), A049417 (row sums).
Cf. A222266.
Sequence in context: A180184 A330752 A222266 * A077610 A329534 A317746
KEYWORD
nonn,tabf
AUTHOR
Eric W. Weisstein, Nov 11 2002
STATUS
approved