OFFSET
1,3
COMMENTS
The bi-unitary divisors of n are the divisors of n such that the largest common unitary divisor of d and n/d is 1, indicated by A165430.
The first difference from the triangle A077609 is in row n=16.
The concept of bi-unitary divisors was introduced by Suryanarayana (1972). - Amiram Eldar, Mar 09 2024
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..13171 (rows 1 <= n <= 2000).
D. Suryanarayana, The number of bi-unitary divisors of an integer, in: A. A. Gioia and D. L. Goldsmith (eds.), The Theory of Arithmetic Functions, Lecture Notes in Mathematics, Vol 251, Springer, Berlin, Heidelberg, 1972.
EXAMPLE
The table starts
1;
1, 2;
1, 3;
1, 4;
1, 5;
1, 2, 3, 6;
1, 7;
1, 2, 4, 8;
1, 9;
1, 2, 5, 10;
1, 11;
1, 3, 4, 12;
1, 13;
1, 2, 7, 14;
1, 3, 5, 15;
1, 2, 8, 16;
1, 17;
MAPLE
# Return set of unitary divisors of n.
A077610_row := proc(n)
local u, d ;
u := {} ;
for d in numtheory[divisors](n) do
if igcd(n/d, d) = 1 then
u := u union {d} ;
end if;
end do:
u ;
end proc:
# true if d is a bi-unitary divisor of n.
isbiudiv := proc(n, d)
if n mod d = 0 then
if % = {1} then
true;
else
false;
end if;
else
false;
end if;
end proc:
# Return set of bi-unitary divisors of n
biudivs := proc(n)
local u, d ;
u := {} ;
for d in numtheory[divisors](n) do
if isbiudiv(n, d) then
u := u union {d} ;
end if;
end do:
u ;
end proc:
for n from 1 to 35 do
print(op(biudivs(n))) ;
end do:
MATHEMATICA
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; Table[Function[d, Union@ Flatten@ Select[Transpose@ {d, n/d}, Last@ Intersection[f@ #1, f@ #2] == 1 & @@ # &]]@ Select[Divisors@ n, # <= Floor@ Sqrt@ n &], {n, 35}] (* Michael De Vlieger, May 07 2017 *)
PROG
(PARI) isbdiv(f, d) = {for (i=1, #f~, if(f[i, 2]%2 == 0 && valuation(d, f[i, 1]) == f[i, 2]/2, return(0))); 1; }
row(n) = {my(d = divisors(n), f = factor(n), bdiv = []); for(i=1, #d, if(isbdiv(f, d[i]), bdiv = concat(bdiv, d[i]))); bdiv; } \\ Amiram Eldar, Mar 24 2023
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, May 05 2013
STATUS
approved