login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379027
Irregular table read by rows in which the n-th row lists the modified exponential divisors of n.
5
1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 6, 8, 24, 1, 25, 1, 2, 13, 26, 1, 3, 27, 1, 4, 7, 28
OFFSET
1,3
COMMENTS
If the prime factorization of n is Product_{i} p_i^e_i, then the modified exponential divisors of n are all the divisors of n that are of the form Product_{i} p_i^b_i such that 1 + b_i | 1 + e_i for all i.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..11627 (first 2000 rows)
Andrew V. Lelechenko, The Quest for the Generalized Perfect Numbers, Theoretical and Applied Aspects of Cybernetics, Proceedings, The 4th International Scientific Conference of Students and Young Scientists, Kyiv, 2014.
EXAMPLE
The table starts:
1;
1, 2;
1, 3;
1, 4;
1, 5;
1, 2, 3, 6;
1, 7;
1, 2, 8;
1, 9;
1, 2, 5, 10;
1, 11;
1, 3, 4, 12;
MATHEMATICA
modexpDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[Divisible, {f[[;; , 2]] + 1, IntegerExponent[d, f[[;; , 1]]] + 1}]]; row[1] = {1}; row[n_] := Select[Divisors[n], modexpDivQ[n, #] &]; Table[row[n], {n, 1, 28}] // Flatten
PROG
(PARI) ismodexpdiv(f, d) = {my(e); for(i=1, #f~, e = valuation(d, f[i, 1]); if((f[i, 2]+1) % (e+1), return(0))); 1; }
row(n) = {my(f = factor(n), d = divisors(f), mediv = [1]); if(n == 1, return(mediv)); for(i=2, #d, if(ismodexpdiv(f, d[i]), mediv = concat(mediv, d[i]))); mediv; }
CROSSREFS
Cf. A379028 (row lengths), A241405 (row sums).
Similar tables: A027750 (all divisors), A077609 (infinitary), A077610 (unitary), A222266 (bi-unitary), A322791 (exponential), A361255 (exponential unitary).
Sequence in context: A330752 A222266 A077609 * A077610 A329534 A317746
KEYWORD
nonn,easy,tabf
AUTHOR
Amiram Eldar, Dec 14 2024
STATUS
approved