OFFSET
1,3
COMMENTS
If the prime factorization of n is Product_{i} p_i^e_i, then the modified exponential divisors of n are all the divisors of n that are of the form Product_{i} p_i^b_i such that 1 + b_i | 1 + e_i for all i.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..11627 (first 2000 rows)
Andrew V. Lelechenko, The Quest for the Generalized Perfect Numbers, Theoretical and Applied Aspects of Cybernetics, Proceedings, The 4th International Scientific Conference of Students and Young Scientists, Kyiv, 2014.
David Moews, Perfect, amicable and sociable numbers.
EXAMPLE
The table starts:
1;
1, 2;
1, 3;
1, 4;
1, 5;
1, 2, 3, 6;
1, 7;
1, 2, 8;
1, 9;
1, 2, 5, 10;
1, 11;
1, 3, 4, 12;
MATHEMATICA
modexpDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[Divisible, {f[[;; , 2]] + 1, IntegerExponent[d, f[[;; , 1]]] + 1}]]; row[1] = {1}; row[n_] := Select[Divisors[n], modexpDivQ[n, #] &]; Table[row[n], {n, 1, 28}] // Flatten
PROG
(PARI) ismodexpdiv(f, d) = {my(e); for(i=1, #f~, e = valuation(d, f[i, 1]); if((f[i, 2]+1) % (e+1), return(0))); 1; }
row(n) = {my(f = factor(n), d = divisors(f), mediv = [1]); if(n == 1, return(mediv)); for(i=2, #d, if(ismodexpdiv(f, d[i]), mediv = concat(mediv, d[i]))); mediv; }
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Amiram Eldar, Dec 14 2024
STATUS
approved