login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322791
Irregular triangle read by rows in which the n-th row lists the exponential divisors (or e-divisors) of n.
19
1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 4, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 12, 48, 7, 49
OFFSET
1,2
LINKS
Xiaodong Cao and Wenguang Zhai, Some arithmetic functions involving exponential divisors, Journal of Integer Sequences, Vol. 13, No. 2 (2010), Article 10.3.7.
E. G. Straus and M. V. Subbarao, On exponential divisors, Duke Mathematical Journal, Vol. 41, No. 2 (1974), pp. 465-471, alternative link.
Eric Weisstein's World of Mathematics, e-Divisor
EXAMPLE
The table starts
1
2
3
2, 4
5
6
7
2, 8
3, 9
10
MAPLE
A322791 := proc(n)
local expundivs , d, isue, p, ai, bi;
expudvs := {} ;
for d in numtheory[divisors](n) do
isue := true ;
for p in numtheory[factorset](n) do
ai := padic[ordp](n, p) ;
bi := padic[ordp](d, p) ;
if bi > 0 then
if modp(ai, bi) <>0 then
isue := false;
end if;
else
isue := false ;
end if;
end do;
if isue then
expudvs := expudvs union {d} ;
end if;
end do:
sort(expudvs) ;
end proc:
seq(op(A322791(n)), n=1..40) ; # R. J. Mathar, Mar 06 2023
MATHEMATICA
divQ[n_, m_] := (n > 0 && m>0 && Divisible[n, m]); expDivQ[n_, d_] := Module[ {f=FactorInteger[n]}, And@@MapThread[divQ, {f[[;; , 2]], IntegerExponent[ d, f[[;; , 1]]]} ]]; expDivs[1]={1}; expDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&] ]; Table[expDivs[n], {n, 1, 50}] // Flatten
PROG
(PARI) isexpdiv(f, d) = { my(e); for (i=1, #f~, e = valuation(d, f[i, 1]); if(!e || (e && f[i, 2] % e), return(0))); 1; }
row(n) = {my(d = divisors(n), f = factor(n), ediv = []); if(n == 1, return([1])); for(i=2, #d, if(isexpdiv(f, d[i]), ediv = concat(ediv, d[i]))); ediv; } \\ Amiram Eldar, Mar 27 2023
CROSSREFS
Cf. A049419 (row lengths), A051377 (row sums).
Cf. A027750 (all divisors), A077609 (infinitary), A077610 (unitary), A222266 (bi-unitary).
Sequence in context: A304728 A369609 A284318 * A361255 A304745 A353853
KEYWORD
nonn,tabf
AUTHOR
Amiram Eldar, Dec 26 2018
STATUS
approved