login
A049419
a(1) = 1; for n > 1, a(n) = number of exponential divisors of n.
48
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1
OFFSET
1,4
COMMENTS
The exponential divisors of a number x = Product p(i)^r(i) are all numbers of the form Product p(i)^s(i) where s(i) divides r(i) for all i.
Wu gives a complicated Dirichlet g.f.
a(1) = 1 by convention. This is also required for a function to be multiplicative. - N. J. A. Sloane, Mar 03 2009
The inverse Moebius transform seems to be in A124315. The Dirichlet inverse appears to be related to A166234. - R. J. Mathar, Jul 14 2014
LINKS
Andrew V. Lelechenko, Exponential and infinitary divisors, arXiv:1405.7597 [math.NT], 2014, sequence tau^(e).
J. O. M. Pedersen, Tables of Aliquot Cycles.
J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
László Tóth and Nicuşor Minculete, Exponential unitary divisors, arXiv:0910.2798 [math.NT], 2009.
Tim Trudgian, The sum of the unitary divisor function, arXiv:1312.4615 [math.NT], 2013-2014, Section 3.
Eric Weisstein's World of Mathematics, e-Divisor.
Jie Wu, Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré, J. Theor. Nombr. Bordeaux 7 (1) (1995) 133-141.
FORMULA
Multiplicative with a(p^e) = tau(e). - Vladeta Jovovic, Jul 23 2001
Sum_{k=1..n} a(k) ~ A327837 * n. - Vaclav Kotesovec, Feb 27 2023
EXAMPLE
a(8)=2 because 2 and 2^3 are e-divisors of 8.
The sets of e-divisors start as:
1:{1}
2:{2}
3:{3}
4:{2, 4}
5:{5}
6:{6}
7:{7}
8:{2, 8}
9:{3, 9}
10:{10}
11:{11}
12:{6, 12}
13:{13}
14:{14}
15:{15}
16:{2, 4, 16}
17:{17}
18:{6, 18}
19:{19}
20:{10, 20}
21:{21}
22:{22}
23:{23}
24:{6, 24}
MAPLE
A049419 := proc(n)
local a;
a := 1 ;
for pf in ifactors(n)[2] do
a := a*numtheory[tau](op(2, pf)) ;
end do:
a ;
end proc:
seq(A049419(n), n=1..20) ; # R. J. Mathar, Jul 14 2014
MATHEMATICA
a[1] = 1; a[p_?PrimeQ] = 1; a[p_?PrimeQ, e_] := DivisorSigma[0, e]; a[n_] := Times @@ (a[#[[1]], #[[2]]] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Jan 30 2012, after Vladeta Jovovic *)
PROG
(Haskell)
a049419 = product . map (a000005 . fromIntegral) . a124010_row
-- Reinhard Zumkeller, Mar 13 2012
(GAP) A049419:=n->Product(List(Collected(Factors(n)), p -> Tau(p[2]))); List([1..10^4], n -> A049419(n)); # Muniru A Asiru, Oct 29 2017
(PARI) a(n) = vecprod(apply(numdiv, factor(n)[, 2])); \\ Amiram Eldar, Mar 27 2023
CROSSREFS
Row lengths of A322791.
Cf. A049599, A061389, A051377 (sum of e-divisors).
Partial sums are in A099593.
Sequence in context: A321455 A096309 A185102 * A299090 A375430 A046951
KEYWORD
nonn,mult,nice
EXTENSIONS
More terms from Jud McCranie, May 29 2000
STATUS
approved