login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A049421
Composite numbers k such that k!/k# - 1 is prime, where k# = primorial numbers A034386.
4
4, 6, 8, 16, 21, 34, 39, 45, 50, 72, 76, 133, 164, 202, 216, 221, 280, 496, 605, 2532, 2967, 3337, 8711, 10977, 13724, 15250, 18160, 20943, 33684, 41400
OFFSET
1,1
COMMENTS
k!/k# is known as n compositorial.
Subset of A140293. Prime numbers are excluded since k!/k# = (k-1)!/(k-1)# when k is prime. - Giovanni Resta, Mar 28 2013
a(31) > 50000. - Roger Karpin, Jul 08 2015
MATHEMATICA
Primorial[n_] := Product[Prime[i], {i, 1, PrimePi[n]}];
Select[Range[2,
1000], ! PrimeQ[#] && PrimeQ[(#! / Primorial[#]) - 1] &] (* Robert Price, Oct 11 2019 *)
CROSSREFS
KEYWORD
hard,nonn
AUTHOR
Paul Jobling (paul.jobling(AT)whitecross.com)
EXTENSIONS
More terms from Robert G. Wilson v, Jun 21 2001
a(23)-a(25) from Giovanni Resta, Apr 02 2013
a(26) from Roger Karpin, Nov 29 2014
a(27)-a(28) from Daniel Heuer, ca Aug 2000
a(29)-a(30) from Serge Batalov, Feb 09 2015
STATUS
approved