login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260314
Expansion of phi(x)^2 / phi(-x^2) in powers of x where phi() is a Ramanujan theta function.
1
1, 4, 6, 8, 16, 24, 32, 48, 66, 92, 128, 168, 224, 296, 384, 496, 640, 816, 1030, 1304, 1632, 2032, 2528, 3120, 3840, 4716, 5760, 7008, 8512, 10296, 12416, 14944, 17922, 21440, 25600, 30480, 36208, 42936, 50784, 59952, 70656, 83088, 97536, 114312, 133728
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
G.f. is a period 1 Fourier series which satisfies f(-1/ (32 t)) = 8^(1/2) (t/i)^(1/2) g(t) where q = exp(2*Pi i t) and g() is the g.f. for A260313.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^4) * chi(x)^4 = psi(x) * chi(x)^3 = phi(-x^2)^3 / phi(-x)^2 = psi(x)^4 / f(-x^4)^3 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of eta(q^2)^8 / (eta(q)^4 * eta(q^4)^3) in powers of q.
Euler transform of period 4 sequence [4, -4, 4, -1, ... ].
a(n) ~ exp(Pi*sqrt(n/2)) / (2*sqrt(2*n)). - Vaclav Kotesovec, Oct 14 2015
EXAMPLE
G.f. = 1 + 4*x + 6*x^2 + 8*x^3 + 16*x^4 + 24*x^5 + 32*x^6 + 48*x^7 + ...
MATHEMATICA
a[ n_]:= SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 / EllipticTheta[ 4, 0, x^2], {x, 0, n}];
nmax=60; CoefficientList[Series[Product[(1-x^(2*k))^8 / ((1-x^k)^4 * (1-x^(4*k))^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 / (eta(x + A)^4 * eta(x^4 + A)^3), n))};
(PARI) q='q+O('q^99); Vec(eta(q^2)^8/(eta(q)^4*eta(q^4)^3)) \\ Altug Alkan, Mar 19 2018
CROSSREFS
Cf. A260313.
Sequence in context: A295006 A269833 A049421 * A238269 A039624 A083166
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 22 2015
STATUS
approved