OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^4) * chi(x)^4 = psi(x) * chi(x)^3 = phi(-x^2)^3 / phi(-x)^2 = psi(x)^4 / f(-x^4)^3 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of eta(q^2)^8 / (eta(q)^4 * eta(q^4)^3) in powers of q.
Euler transform of period 4 sequence [4, -4, 4, -1, ... ].
a(n) ~ exp(Pi*sqrt(n/2)) / (2*sqrt(2*n)). - Vaclav Kotesovec, Oct 14 2015
EXAMPLE
G.f. = 1 + 4*x + 6*x^2 + 8*x^3 + 16*x^4 + 24*x^5 + 32*x^6 + 48*x^7 + ...
MATHEMATICA
a[ n_]:= SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 / EllipticTheta[ 4, 0, x^2], {x, 0, n}];
nmax=60; CoefficientList[Series[Product[(1-x^(2*k))^8 / ((1-x^k)^4 * (1-x^(4*k))^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 / (eta(x + A)^4 * eta(x^4 + A)^3), n))};
(PARI) q='q+O('q^99); Vec(eta(q^2)^8/(eta(q)^4*eta(q^4)^3)) \\ Altug Alkan, Mar 19 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 22 2015
STATUS
approved