login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260313 Expansion of phi(x)^2 / psi(x) in powers of x where phi(), psi() are Ramanujan theta functions. 2
1, 3, 1, -2, 3, 4, -3, -3, 2, 7, 0, -9, 4, 9, -5, -11, 6, 18, -7, -18, 9, 20, -12, -27, 14, 36, -11, -42, 18, 46, -24, -54, 23, 69, -27, -79, 37, 90, -44, -104, 48, 126, -52, -147, 65, 162, -78, -189, 85, 225, -91, -254, 114, 286, -136, -327, 142, 381, -159 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x) * chi(x)^4 = phi(-x^2) * chi(x)^3 = psi(x)^3 / psi(x^2)^2 = phi(-x^2)^4 / f(-x)^3 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(1/8) * eta(q^2)^8 / (eta(q)^3 * eta(q^4)^4) in powers of q.
Euler transform of period 4 sequence [ 3, -5, 3, -1, ...].
a(n) = A153172(n) + 2*A153174(n).
EXAMPLE
G.f. = 1 + 3*x + x^2 - 2*x^3 + 3*x^4 + 4*x^5 - 3*x^6 - 3*x^7 + 2*x^8 + ...
G.f. = 1/q + 3*q^7 + q^15 - 2*q^23 + 3*q^31 + 4*q^39 - 3*q^47 - 3*q^55 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x]^2 2 x^(1/8) / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 / (eta(x + A)^3 * eta(x^4 + A)^4), n))};
CROSSREFS
Sequence in context: A286357 A135564 A110063 * A050056 A209882 A336233
KEYWORD
sign
AUTHOR
Michael Somos, Jul 22 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 18:28 EDT 2024. Contains 371667 sequences. (Running on oeis4.)