login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049423
Primes of the form k^2 + 3.
14
3, 7, 19, 67, 103, 199, 487, 787, 1447, 2503, 2707, 3847, 4099, 4903, 5479, 5779, 8467, 8839, 11239, 12547, 14887, 16903, 17959, 19603, 21319, 23719, 24967, 25603, 29587, 31687, 47527, 52903, 58567, 59539, 61507, 65539, 75079, 81799, 88807
OFFSET
1,1
COMMENTS
Note that all terms after the first are congruent to 7 modulo 12.
LINKS
Eric Weisstein's World of Mathematics, Near-Square Prime
FORMULA
Primes m such that m-3 is a square.
For n>0, a(n) = 36*A056902(n-1)^2 + 24*A056902(n-1) + 7. - Henry Bottomley, Jul 06 2000
a(n) = 3 + (2*A097697(n-1))^2. - R. J. Mathar, Aug 07 2008
a(n) >> n^2 log n. - Charles R Greathouse IV, Nov 06 2024
EXAMPLE
19 is prime and is equal to 4^2 + 3, so 19 is a term.
MATHEMATICA
Intersection[Table[n^2+3, {n, 0, 10^2}], Prime[Range[9*10^3]]] ...or... For[i=3, i<=3, a={}; Do[If[PrimeQ[n^2+i], AppendTo[a, n^2+i]], {n, 0, 100}]; Print["n^2+", i, ", ", a]; i++ ] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
Select[Table[n^2+3, {n, 0, 198000}], PrimeQ] (* Vincenzo Librandi, Dec 08 2011 *)
PROG
(Magma) [n: n in PrimesUpTo(175000) | IsSquare(n-3)]; // Bruno Berselli, Apr 05 2011
(Magma) [a: n in [0..300] | IsPrime(a) where a is n^2+3]; // Vincenzo Librandi, Dec 08 2011
(PARI) list(lim)=my(v=List(), t); forstep(k=0, sqrtint(lim\1-3), 2, if(isprime(t=k^2+3), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Nov 06 2024
CROSSREFS
Cf. A002496, A056899. Note that apart from first term, all of (a(n)-7)/12 have to be terms of A001082 for a(n) to be prime.
Sequence in context: A210985 A160128 A051139 * A121825 A066237 A362137
KEYWORD
easy,nonn
AUTHOR
Paul Jobling (paul.jobling(AT)whitecross.com)
STATUS
approved