|
|
A002496
|
|
Primes of the form k^2 + 1.
(Formerly M1506 N0592)
|
|
214
|
|
|
2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377, 15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617, 42437, 44101, 50177
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
It is conjectured that this sequence is infinite, but this has never been proved.
An equivalent description: primes of form P = (p1*p2*...*pm)^k + 1 where p1..pm are primes and k > 1, since then k must be even for P to be prime.
Also prime = p(n) if A054269(n) = 1, i.e., quotient-cycle-length = 1 in continued fraction expansion of sqrt(p). - Labos Elemer, Feb 21 2001
Also primes p such that phi(p) is a square.
Also primes of form x*y + z, where x, y and z are three successive numbers. - Giovanni Teofilatto, Jun 05 2004
It is a result that goes back to Mirsky that the set of primes p for which p-1 is squarefree has density A, where A = A005596 denotes the Artin constant. More precisely, Sum_{p <= x} mu(p-1)^2 = Ax/log x + o(x/log x) as x tends to infinity. Conjecture: Sum_{p <= x, mu(p-1)=1} 1 = (A/2)x/log x + o(x/log x) and Sum_{p <= x, mu(p-1)=-1} 1 = (A/2)x/log x + o(x/log x). - Pieter Moree (moree(AT)mpim-bonn.mpg.de), Nov 03 2003
Also primes of the form x^y + 1, where x > 0, y > 1. Primes of the form x^y - 1 (x > 0, y > 1) are the Mersenne primes listed in A000668(n) = {3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ...}. - Alexander Adamchuk, Mar 04 2007
With exception of the first two terms {2,5}, the continued fraction (1 + sqrt(p))/2 has period 3. - Artur Jasinski, Feb 03 2010
With exception of the first term {2}, congruent to 1 (mod 4). - Artur Jasinski, Mar 22 2011
With exception of the first two terms, congruent to 1 or 17 (mod 20). - Robert Israel, Oct 14 2014
These primes are the primitive terms which generate the sequence of integers with only one prime factor and whose Euler's totient is square: A054755. So this sequence is a subsequence of A054755 and of A039770. Additionally, the terms of this sequence also have a square cototient, so this sequence is a subsequence of A063752 and A054754.
If p prime = n^2 + 1, phi(p) = n^2 and cototient(p) = 1^2.
Except for 3, the four Fermat primes in A019434 {5, 17, 257, 65537}, belong to this sequence; with F_k = 2^(2^k) + 1, phi(F_k) = (2^(2^(k-1)))^2.
See the file "Subfamilies and subsequences" (& I) in A039770 for more details, proofs with data, comments, formulas and examples. (End)
In this sequence, primes ending with 7 seem to appear twice as often as primes ending with 1. This is because those with 7 come from integers ending with 4 or 6, while those with 1 come only from integers ending with 0 (see De Koninck & Mercier reference). - Bernard Schott, Nov 29 2020
The set of primes p for which any elliptic curve y^2 = x^3 + dx, (p,d) = 1, has order p-1 over GF(p). - Gary Walsh, Sep 01 2021
|
|
REFERENCES
|
Jean-Marie De Koninck & Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 211 pp. 34 and 169, Ellipses, Paris, 2004.
Leonhard Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 22.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
Hugh L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
C. Stanley Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 116.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 134.
|
|
LINKS
|
William D. Banks, John B. Friedlander, Carl Pomerance and Igor E. Shparlinski, Multiplicative structure of values of the Euler function, in High Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams (A. Van der Poorten, ed.), Fields Inst. Comm. 41 (2004), pp. 29-47.
|
|
FORMULA
|
There are O(sqrt(n)/log(n)) members of this sequence up to n. But this is just an upper bound. See the Bateman-Horn or Wolf papers, for example, for the conjectured for what is believed to be the correct density.
|
|
MAPLE
|
select(isprime, [2, seq(4*i^2+1, i= 1..1000)]); # Robert Israel, Oct 14 2014
|
|
MATHEMATICA
|
Select[Range[100]^2+1, PrimeQ]
Join[{2}, Select[Range[2, 300, 2]^2+1, PrimeQ]] (* Harvey P. Dale, Dec 18 2018 *)
|
|
PROG
|
(PARI) is_A002496(n)=issquare(n-1)&&isprime(n) \\ For "random" numbers in the range 10^10 and beyond, at least 5 times faster than the above. - M. F. Hasler, Oct 14 2014
(Magma) [p: p in PrimesUpTo(100000)| IsSquare(p-1)]; // Vincenzo Librandi, Apr 09 2011
(Haskell)
a002496 n = a002496_list !! (n-1)
a002496_list = filter ((== 1) . a010051') a002522_list
(Python)
# Python 3.2 or higher required
from itertools import accumulate
from sympy import isprime
A002496_list = [n+1 for n in accumulate(range(10**5), lambda x, y:x+2*y-1) if isprime(n+1)] # Chai Wah Wu, Sep 23 2014
(Python)
# Python 2.4 or higher required
from sympy import isprime
|
|
CROSSREFS
|
Cf. A083844 (number of these primes < 10^n), A199401 (growth constant).
Cf. A237040 (an analog for n^3 + 1).
Primes of form n^2+b^4, b fixed: A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|