login
A002493
Number of ways to arrange n non-attacking kings on an n X n board, with 2 sides identified to form a cylinder, with 1 in each row and column.
(Formerly M4719 N2017)
5
1, 0, 0, 0, 10, 60, 462, 3920, 36954, 382740, 4327510, 53088888, 702756210, 9988248956, 151751644590, 2454798429600, 42130249479562, 764681923900260, 14636063499474054, 294639009867223880
OFFSET
1,5
COMMENTS
Number of directed Hamiltonian paths in the complement of C_n where C_n is the n-cycle graph. - Andrew Howroyd, Mar 15 2016
Number of ways of arranging n consecutive integers in a circle such that no pair of adjacent integers differ by 1, rotations are distinct. - Graham Holmes, Sep 03 2020
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramson and W. O. J. Moser, Permutations without rising or falling w-sequences, Ann. Math. Stat., 38 (1967), 1245-1254.
Eli Bagno, Estrella Eisenberg, Shulamit Reches, and Moriah Sigron, Counting King Permutations on the Cylinder, arXiv:2001.02948 [math.CO], 2020.
Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 627-8.
A. J. Schwenk, Letter to N. J. A. Sloane, Mar 24 1980 (with enclosure and notes)
FORMULA
The linear recurrence operator annihilating this sequence is (N is the shift operator Na(n):=a(n + 1)) is - 3*(43*n + 197)*(n - 2)*(n + 1)/( - 1222 + 753*n + 349*n^2) - 5*(n - 1)*(44*n^2 + 477*n + 1222)/( - 1222 + 753*n + 349*n^2)*N + 2*(n + 1)*(239*n^2 + 873*n - 1232)/( - 1222 + 753*n + 349*n^2)*N^2 + 4*(394 - 259*n + 215*n^2 + 55*n^3)/( - 1222 + 753*n + 349*n^2)*N^3 - ( - 7342 + 3699*n + 2718*n^2 + 349*n^3)/( - 1222 + 753*n + 349*n^2)*N^4 + N^5. - Doron Zeilberger, Nov 14 2007
a(n) = Sum((-1)^(n-k)*k!*A102413(n,k),k=1..n), n>2. - Vladeta Jovovic, Nov 23 2007
a(n) = b(n+1) - 2*Sum_{k=0..floor(n/2)} b(n-2*k) for n>1, where b(n)=A002464(n) if n>0 else b(0)=0. - Vladeta Jovovic, Nov 24 2007
Asymptotic: a(n) ~ n!/e^2*(1 - 2/n - 2/n^2 - 4/(3n^3) + 8/(3n^4) + 326/(15n^5) + 4834/(45n^6) + 154258/(315n^7) + 232564/(105n^8) + ...). - Vaclav Kotesovec, Apr 06 2012
a(n) = n! + Sum_{i=1..n-1} ((-1)^i * (n-i-1)! * n * Sum_{j=0..i-1} (2^(j+1) * C(i-1,j) * C(n-i,j+1))), for n>=5. - Andrew Woods, Jan 08 2015
MAPLE
b1:= proc(n, r) local gu, x; if r=0 then RETURN(0): fi: gu := (x*diff(x*(1+x)/(1-x), x))* (x*(1 + x)/(1 - x))^(r-1); gu := taylor(gu, x = 0, n +1); coeff(gu, x, n ) end: b:=proc(n) local r: if n=1 then 1 elif n=2 then 0 else add((-1)^(n-r)*r!*b1(n, r), r=0..n): fi: end: # Doron Zeilberger, Nov 14 2007
MATHEMATICA
b[n_]:=(If[n>0, n!+Sum[(-1)^r*(n-r)!*Sum[2^c*Binomial[r-1, c-1]*Binomial[n-r, c], {c, 1, r}], {r, 1, n-1}], 0]); Table[If[n>2, b[n]-2*Sum[b[n-1-2k], {k, 0, Floor[n/2]}], If[n==1, 1, 0]], {n, 1, 25}] (* Vaclav Kotesovec after Vladeta Jovovic, Apr 06 2012 *)
CROSSREFS
Right diagonal of A338838.
Sequence in context: A250575 A155633 A368525 * A054364 A004309 A281863
KEYWORD
nonn
STATUS
approved