login
A281863
Alternating powers of 60 and 10 times powers of 60.
4
1, 10, 60, 600, 3600, 36000, 216000, 2160000, 12960000, 129600000, 777600000, 7776000000, 46656000000, 466560000000, 2799360000000, 27993600000000, 167961600000000, 1679616000000000, 10077696000000000, 100776960000000000, 604661760000000000
OFFSET
0,2
COMMENTS
These numbers are the values for the positions in the Sumerian (and Babylonian) alternating sexagesimal - decimal system (used at least up to 10*60^2 = 36000, but here extended).
For the numbers in this mixed base system see A055643. For the number of symbols needed for representing n see A131650. For the number of digits (including 0) of the representation of n see A282622.
REFERENCES
Georges Ifrah, Histoire Universelle des Chiffres, Paris, 1981.
Georges Ifrah, From one to zero, A universal history of numbers, Viking Penguin Inc., 1985.
Georges Ifrah, Universalgeschichte der Zahlen, Campus Verlag, Frankfurt, New York, 2. Auflage, 1987, pp. 210-221.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 127.
FORMULA
a(2*n) = 60^(n/2), a(2*n+1) = 10*60^((n-1)/2), n >= 0.
From Colin Barker, Feb 21 2017: (Start)
a(n) = 60*a(n-2) for n>1.
G.f.: (1 + 10*x) / (1 - 60*x^2). (End)
E.g.f.: cosh(2*sqrt(15)*x) + sqrt(5/3)*sinh(2*sqrt(15)*x). - Stefano Spezia, Sep 08 2024
MATHEMATICA
LinearRecurrence[{0, 60}, {1, 10}, 21] (* or *) a[0]=1; a[1]=10; a[n_]:=60*a[n-2]; Table[a[n], {n, 0, 20}] (* Indranil Ghosh, Feb 21 2017 *)
PROG
(PARI) Vec((1 + 10*x) / (1 - 60*x^2) + O(x^30)) \\ Colin Barker, Feb 21 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 19 2017
STATUS
approved