Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Sep 08 2024 12:10:50
%S 1,10,60,600,3600,36000,216000,2160000,12960000,129600000,777600000,
%T 7776000000,46656000000,466560000000,2799360000000,27993600000000,
%U 167961600000000,1679616000000000,10077696000000000,100776960000000000,604661760000000000
%N Alternating powers of 60 and 10 times powers of 60.
%C These numbers are the values for the positions in the Sumerian (and Babylonian) alternating sexagesimal - decimal system (used at least up to 10*60^2 = 36000, but here extended).
%C For the numbers in this mixed base system see A055643. For the number of symbols needed for representing n see A131650. For the number of digits (including 0) of the representation of n see A282622.
%D Georges Ifrah, Histoire Universelle des Chiffres, Paris, 1981.
%D Georges Ifrah, From one to zero, A universal history of numbers, Viking Penguin Inc., 1985.
%D Georges Ifrah, Universalgeschichte der Zahlen, Campus Verlag, Frankfurt, New York, 2. Auflage, 1987, pp. 210-221.
%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 127.
%H Colin Barker, <a href="/A281863/b281863.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,60).
%F a(2*n) = 60^(n/2), a(2*n+1) = 10*60^((n-1)/2), n >= 0.
%F From _Colin Barker_, Feb 21 2017: (Start)
%F a(n) = 60*a(n-2) for n>1.
%F G.f.: (1 + 10*x) / (1 - 60*x^2). (End)
%F E.g.f.: cosh(2*sqrt(15)*x) + sqrt(5/3)*sinh(2*sqrt(15)*x). - _Stefano Spezia_, Sep 08 2024
%t LinearRecurrence[{0,60},{1,10},21] (* or *) a[0]=1;a[1]=10;a[n_]:=60*a[n-2];Table[a[n],{n,0,20}] (* _Indranil Ghosh_, Feb 21 2017 *)
%o (PARI) Vec((1 + 10*x) / (1 - 60*x^2) + O(x^30)) \\ _Colin Barker_, Feb 21 2017
%Y Cf. A131650, A055643, A282622.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Feb 19 2017