|
|
A055643
|
|
Babylonian numbers: integers in base 60 with each sexagesimal digit represented by 2 decimal digits, leading zeros omitted.
|
|
13
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
From Wolfdieter Lang, Jan 16 2018: (Start)
The symbols used for 0..9 in this base 60 notation are 00, 01, ..., 09, but leading zeros are omitted.
For the Sumerian-Babylonian sexagesimal-decimal number system which uses two positions for each base-60 position filled with only one-digit numbers alternating between ranges of 0 to 9 and 0 to 5 see the link below.
(End)
|
|
REFERENCES
|
Mohammad K. Azarian, Meftah al-hesab: A Summary, MJMS, Vol. 12, No. 2, Spring 2000, pp. 75-95. Mathematical Reviews, MR 1 764 526. Zentralblatt MATH, Zbl 1036.01002.
Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath ud-din Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 32-42, 1998.
Georges Ifrah, Histoire Universelle des Chiffres, Paris, 1981.
Georges Ifrah, From one to zero, A universal history of numbers, Viking Penguin Inc., 1985.
Georges Ifrah, Universalgeschichte der Zahlen, Campus Verlag, Frankfurt, New York, 2. Auflage, 1987, pp. 210-221.
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 0..10000
Wolfdieter Lang, Sumerian-Babylonian sexagesimal-decimal number system.
|
|
MATHEMATICA
|
Array[FromDigits@ Apply[Join, PadLeft[#, 2] & /@ IntegerDigits@ IntegerDigits[#, 60]] &, 71, 0] (* Michael De Vlieger, Jan 11 2018 *)
|
|
PROG
|
(PARI) A055643(n)=fromdigits(digits(n, 60), 100) \\ M. F. Hasler, Jan 09 2018
|
|
CROSSREFS
|
Cf. A049872, A131650,
Note also that A250073 = a(A000079(n)), A250089 = a(A051037(n)), A254334 = a(A000244(n)), A254335 = a(A000351(n)), A254336 = a(A011557(n)).
See also A281863 (value of the 0,1,2,...n-th digit of a(n), counted from the right), A282622 (length of a(n), #digits, for n >= 1).
Sequence in context: A265711 A262065 A296765 * A122079 A272118 A247163
Adjacent sequences: A055640 A055641 A055642 * A055644 A055645 A055646
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Henry Bottomley, Jun 06 2000
|
|
EXTENSIONS
|
a(69) and a(70) from WG Zeist, Sep 08 2012
|
|
STATUS
|
approved
|
|
|
|