

A055643


Babylonian numbers: integers in base 60 with each sexagesimal digit represented by 2 decimal digits, leading zeros omitted.


13



0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

From Wolfdieter Lang, Jan 16 2018: (Start)
The symbols used for 0..9 in this base 60 notation are 00, 01, ..., 09, but leading zeros are omitted.
For the SumerianBabylonian sexagesimaldecimal number system which uses two positions for each base60 position filled with only onedigit numbers alternating between ranges of 0 to 9 and 0 to 5 see the link below.
(End)


REFERENCES

Mohammad K. Azarian, Meftah alhesab: A Summary, MJMS, Vol. 12, No. 2, Spring 2000, pp. 7595. Mathematical Reviews, MR 1 764 526. Zentralblatt MATH, Zbl 1036.01002.
Mohammad K. Azarian, A Summary of Mathematical Works of Ghiyath uddin Jamshid Kashani, Journal of Recreational Mathematics, Vol. 29(1), pp. 3242, 1998.
Georges Ifrah, Histoire Universelle des Chiffres, Paris, 1981.
Georges Ifrah, From one to zero, A universal history of numbers, Viking Penguin Inc., 1985.
Georges Ifrah, Universalgeschichte der Zahlen, Campus Verlag, Frankfurt, New York, 2. Auflage, 1987, pp. 210221.


LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..10000
Wolfdieter Lang, SumerianBabylonian sexagesimaldecimal number system.


MATHEMATICA

Array[FromDigits@ Apply[Join, PadLeft[#, 2] & /@ IntegerDigits@ IntegerDigits[#, 60]] &, 71, 0] (* Michael De Vlieger, Jan 11 2018 *)


PROG

(PARI) A055643(n)=fromdigits(digits(n, 60), 100) \\ M. F. Hasler, Jan 09 2018


CROSSREFS

Cf. A049872, A131650,
Note also that A250073 = a(A000079(n)), A250089 = a(A051037(n)), A254334 = a(A000244(n)), A254335 = a(A000351(n)), A254336 = a(A011557(n)).
See also A281863 (value of the 0,1,2,...nth digit of a(n), counted from the right), A282622 (length of a(n), #digits, for n >= 1).
Sequence in context: A265711 A262065 A296765 * A122079 A272118 A247163
Adjacent sequences: A055640 A055641 A055642 * A055644 A055645 A055646


KEYWORD

base,easy,nonn


AUTHOR

Henry Bottomley, Jun 06 2000


EXTENSIONS

a(69) and a(70) from WG Zeist, Sep 08 2012


STATUS

approved



