login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250089
5-smooth numbers (A051037) written in base 60, concatenating the decimal values of the sexagesimal digits.
2
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 100, 104, 112, 115, 120, 121, 130, 136, 140, 148, 200, 205, 208, 215, 224, 230, 240, 242, 300, 312, 320, 336, 345, 400, 403, 410, 416, 430, 448, 500, 520, 524, 600
OFFSET
1,2
COMMENTS
Each pair of digits constitutes the decimal value of a single sexagesimal digit, as on a digital clock, eliminating the colon (:). Any leading zeros are truncated. Thus decimal 64 appears as "104" and not "0104".
REFERENCES
D. E. Knuth, Ancient Babylonian Algorithms, Communications of the ACM 15 (1972): 671-677.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10540 (Hamming numbers <= 60^10)
EXAMPLE
a(28) = 112 since A051037(28) = 72. 72 = 1 * 60 + 12, thus sexagesimal 1,12. Concatenating the decimal values of the sexagesimal places gives "112".
MATHEMATICA
a250089[n_Integer] := FromDigits /@ Map[StringJoin, If[# < 10, StringJoin["0", ToString[#]], ToString[#]] & /@ IntegerDigits[#, 60] & /@ Select[Range[n], Last@Map[First, FactorInteger@#] < 7 &], 2]; a250089[360] (* Michael De Vlieger, Nov 11 2014, after Robert G. Wilson v at A051037 *)
With[{n = 360}, Map[FromDigits@ IntegerDigits[#, MixedRadix[ Flatten@ ConstantArray[{6, 10}, {2 Ceiling@ Log[60, n]}]]] &, Union@ Flatten@ Table[2^p1*3^p2*5^p3, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p3, 0, Log[5, n/(2^p1*3^p2)]}]]] (* Version 10.2, or *)
With[{n = 360}, FromDigits@ StringJoin@ Map[If[# < 10, StringJoin["0", ToString@ #], ToString@ #] &, IntegerDigits[#, 60]] & /@ Union@ Flatten@ Table[2^p1*3^p2*5^p3, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p3, 0, Log[5, n/(2^p1*3^p2)]}]] (* Michael De Vlieger, Feb 20 2017 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michael De Vlieger, Nov 11 2014
STATUS
approved