login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A250089 5-smooth numbers (A051037) written in base 60, concatenating the decimal values of the sexagesimal digits. 2
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 100, 104, 112, 115, 120, 121, 130, 136, 140, 148, 200, 205, 208, 215, 224, 230, 240, 242, 300, 312, 320, 336, 345, 400, 403, 410, 416, 430, 448, 500, 520, 524, 600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Each pair of digits constitutes the decimal value of a single sexagesimal digit, as on a digital clock, eliminating the colon (:). Any leading zeros are truncated. Thus decimal 64 appears as "104" and not "0104".

REFERENCES

D. E. Knuth, Ancient Babylonian Algorithms, Communications of the ACM 15 (1972): 671-677.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10540 (Hamming numbers <= 60^10)

EXAMPLE

a(28) = 112 since A051037(28) = 72. 72 = 1 * 60 + 12, thus sexagesimal 1,12. Concatenating the decimal values of the sexagesimal places gives "112".

MATHEMATICA

a250089[n_Integer] := FromDigits /@ Map[StringJoin, If[# < 10, StringJoin["0", ToString[#]], ToString[#]] & /@ IntegerDigits[#, 60] & /@ Select[Range[n], Last@Map[First, FactorInteger@#] < 7 &], 2]; a250089[360] (* Michael De Vlieger, Nov 11 2014, after Robert G. Wilson v at A051037 *)

With[{n = 360}, Map[FromDigits@ IntegerDigits[#, MixedRadix[ Flatten@ ConstantArray[{6, 10}, {2 Ceiling@ Log[60, n]}]]] &, Union@ Flatten@ Table[2^p1*3^p2*5^p3, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p3, 0, Log[5, n/(2^p1*3^p2)]}]]] (* Version 10.2, or *)

With[{n = 360}, FromDigits@ StringJoin@ Map[If[# < 10, StringJoin["0", ToString@ #], ToString@ #] &, IntegerDigits[#, 60]] & /@ Union@ Flatten@ Table[2^p1*3^p2*5^p3, {p1, 0, Log[2, n/(1)]}, {p2, 0, Log[3, n/(2^p1)]}, {p3, 0, Log[5, n/(2^p1*3^p2)]}]] (* Michael De Vlieger, Feb 20 2017 *)

CROSSREFS

Cf. A051037, A250073, A254334, A254335, A254336.

Sequence in context: A014866 A051661 A051037 * A257997 A070023 A035303

Adjacent sequences:  A250086 A250087 A250088 * A250090 A250091 A250092

KEYWORD

nonn,base

AUTHOR

Michael De Vlieger, Nov 11 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 22:27 EST 2019. Contains 329880 sequences. (Running on oeis4.)