login
A055641
Number of zero digits in n.
67
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 1
OFFSET
0,101
LINKS
FORMULA
From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = m + 1 - A055640(n) = Sum_{j=1..m+1} (1 + floor(n/10^j) - floor(n/10^j+0.9)), where m = floor(log_10(n)).
G.f.: g(x) = 1 + (1/(1-x))*Sum_{j>=0} (x^(10*10^j) - x^(11*10^j))/(1-x^10^(j+1)). (End)
a(n) = if n<10 then A000007(n) else a(A059995(n)) + A000007(A010879(n)). - Reinhard Zumkeller, Apr 30 2013, corrected by M. F. Hasler, Jun 22 2018
EXAMPLE
a(99) = 0 because the digits of 99 are 9 and 9, a(100) = 2 because the digits of 100 are 1, 0 and 0 and there are two 0's.
MATHEMATICA
Array[Last@ DigitCount@ # &, 105] (* Michael De Vlieger, Jul 02 2015 *)
PROG
(Haskell)
a055641 n | n < 10 = 0 ^ n
| otherwise = a055641 n' + 0 ^ d where (n', d) = divMod n 10
-- Reinhard Zumkeller, Apr 30 2013
(PARI) a(n)=if(n, n=digits(n); sum(i=2, #n, n[i]==0), 1) \\ Charles R Greathouse IV, Sep 13 2015
(PARI) A055641(n)=#select(d->!d, digits(n))+!n \\ M. F. Hasler, Jun 22 2018
(Python)
def a(n): return str(n).count("0")
print([a(n) for n in range(106)]) # Michael S. Branicky, May 26 2022
KEYWORD
base,easy,nonn
AUTHOR
Henry Bottomley, Jun 06 2000
STATUS
approved