login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218245
Nicolas's sequence, whose nonnegativity is equivalent to the Riemann hypothesis.
2
2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
a(n) = floor(p(n)#/phi(p(n)#) - log(log(p(n)#))*exp(gamma)), where p(n)# is the n-th primorial, phi is Euler's totient function, and gamma is Euler's constant.
J.-L. Nicolas proved that all terms are >= 0 if and only if the Riemann hypothesis (RH) is true. In fact, results in his 2012 paper imply that RH is equivalent to a(n) = 0 for n > 6. Nicolas's refinement of this result is in A233825.
He also proved that if RH is false, then infinitely many terms are >= 0 and infinitely many terms are < 0.
See Nicolas's sequence A216868 for references, links, and additional cross-refs.
FORMULA
a(n) = [p(n)#/phi(p(n)#) - log(log(p(n)#))*exp(gamma)].
a(n) = [A002110(n)/A005867(n) - log(log(A002110(n)))*e^gamma].
EXAMPLE
p(2)# = 2*3 = 6 and phi(6) = 2, so a(2) = [6/2 - log(log(6))*e^gamma] = [3-0.58319...*1.78107...] = [3-1.038...] = 1.
MATHEMATICA
primorial[n_] := Product[Prime[k], {k, n}]; Table[ With[{p = primorial[n]}, Floor[N[p/EulerPhi[p] - Log[Log[p]]*Exp[EulerGamma]]]], {n, 1, 100}]
CROSSREFS
Sequence in context: A165105 A325674 A055641 * A352516 A086075 A316865
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Oct 24 2012
STATUS
approved