login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216868
Nicolas's sequence whose positivity is equivalent to the Riemann hypothesis.
3
3, 4, 13, 67, 560, 6095, 87693, 1491707, 30942952, 795721368, 22614834943, 759296069174, 28510284114397, 1148788714239052, 50932190960133487, 2532582753383324327, 139681393339880282191, 8089483267352888074399, 512986500081861276401709, 34658318003703434434962860
OFFSET
1,1
COMMENTS
a(n) = p(n)# - floor(phi(p(n)#)*log(log(p(n)#))*exp(gamma)), where p(n)# is the n-th primorial, phi is Euler's totient function, and gamma is Euler's constant.
All a(n) are > 0 if and only if the Riemann hypothesis is true. If the Riemann hypothesis is false, then infinitely many a(n) are > 0 and infinitely many a(n) are <= 0. Nicolas (1983) proved this with a(n) replaced by p(n)#/phi(p(n)#)-log(log(p(n)#))*exp(gamma). Nicolas's refinement of this result is in A233825.
See A185339 for additional links, references, and formulas.
Named after the French mathematician Jean-Louis Nicolas. - Amiram Eldar, Jun 23 2021
REFERENCES
J.-L. Nicolas, Petites valeurs de la fonction d'Euler et hypothèse de Riemann, in Seminar on Number Theory, Paris 1981-82 (Paris 1981/1982), Birkhäuser, Boston, 1983, pp. 207-218.
LINKS
J.-L. Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory, Vol. 17, No.3 (1983), pp. 375-388.
J.-L. Nicolas, Small values of the Euler function and the Riemann hypothesis, arXiv:1202.0729 [math.NT], 2012; Acta Arith., Vol. 155 (2012), pp. 311-321.
FORMULA
a(n) = prime(n)# - floor(phi(prime(n)#)*log(log(prime(n)#))*e^gamma).
a(n) = A002110(n) - floor(A005867(n)*log(log(A002110(n)))*e^gamma).
Limit_{n->oo} a(n)/p(n)# = 0.
EXAMPLE
prime(2)# = 2*3 = 6 and phi(6) = 2, so a(2) = 6 - floor(2*log(log(6))*e^gamma) = 6 - floor(2*0.58319...*1.78107...) = 6 - floor(2.07...) = 6 - 2 = 4.
MATHEMATICA
primorial[n_] := Product[Prime[k], {k, n}]; Table[With[{p = primorial[n]}, p - Floor[EulerPhi[p]*Log[Log[p]]*Exp[EulerGamma]]], {n, 1, 20}]
PROG
(PARI) nicolas(n) = {p = 2; pri = 2; for (i=1, n, print1(pri - floor(eulerphi(pri)*log(log(pri))*exp(Euler)), ", "); p = nextprime(p+1); pri *= p; ); } \\ Michel Marcus, Oct 06 2012
(PARI) A216868(n)={(n=prod(i=1, n, prime(i)))-floor(eulerphi(n)*log(log(n))*exp(Euler))} \\ M. F. Hasler, Oct 06 2012
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Sep 29 2012
STATUS
approved