OFFSET
1,1
COMMENTS
a(n) = p(n)# - floor(phi(p(n)#)*log(log(p(n)#))*exp(gamma)), where p(n)# is the n-th primorial, phi is Euler's totient function, and gamma is Euler's constant.
All a(n) are > 0 if and only if the Riemann hypothesis is true. If the Riemann hypothesis is false, then infinitely many a(n) are > 0 and infinitely many a(n) are <= 0. Nicolas (1983) proved this with a(n) replaced by p(n)#/phi(p(n)#)-log(log(p(n)#))*exp(gamma). Nicolas's refinement of this result is in A233825.
See A185339 for additional links, references, and formulas.
Named after the French mathematician Jean-Louis Nicolas. - Amiram Eldar, Jun 23 2021
REFERENCES
J.-L. Nicolas, Petites valeurs de la fonction d'Euler et hypothèse de Riemann, in Seminar on Number Theory, Paris 1981-82 (Paris 1981/1982), Birkhäuser, Boston, 1983, pp. 207-218.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..350
J.-L. Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory, Vol. 17, No.3 (1983), pp. 375-388.
J.-L. Nicolas, Small values of the Euler function and the Riemann hypothesis, arXiv:1202.0729 [math.NT], 2012; Acta Arith., Vol. 155 (2012), pp. 311-321.
FORMULA
EXAMPLE
prime(2)# = 2*3 = 6 and phi(6) = 2, so a(2) = 6 - floor(2*log(log(6))*e^gamma) = 6 - floor(2*0.58319...*1.78107...) = 6 - floor(2.07...) = 6 - 2 = 4.
MATHEMATICA
primorial[n_] := Product[Prime[k], {k, n}]; Table[With[{p = primorial[n]}, p - Floor[EulerPhi[p]*Log[Log[p]]*Exp[EulerGamma]]], {n, 1, 20}]
PROG
(PARI) nicolas(n) = {p = 2; pri = 2; for (i=1, n, print1(pri - floor(eulerphi(pri)*log(log(pri))*exp(Euler)), ", "); p = nextprime(p+1); pri *= p; ); } \\ Michel Marcus, Oct 06 2012
(PARI) A216868(n)={(n=prod(i=1, n, prime(i)))-floor(eulerphi(n)*log(log(n))*exp(Euler))} \\ M. F. Hasler, Oct 06 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Sep 29 2012
STATUS
approved